Преобразование рациональных выражений: виды преобразований, примеры. Виды рациональных выражений

Любое дробное выражение (п. 48) можно записать в виде , где Р и Q - рациональные выражения, причем Q обязательно содержит переменные. Такую дробь - называют рациональной дробью.

Примеры рациональных дробей:

Основное свойство дроби выражается тождеством справедливым при условиях здесь - целое рациональное выражение. Это значит, что числитель и знаменатель рациональной дроби можно умножить или разделить на одно и то же отличное от нуля число, одночлен или многочлен.

Например, свойство дроби может быть использовано для перемены знаков у членов дроби. Если числитель и знаменатель дроби - умножить на -1, получим Таким образом, значение дроби не изменится, если одновременно изменить знаки у числителя и знаменателя. Если же изменить знак только у числителя или только у знаменателя, то и дробь изменит свои знак:

Например,

60. Сокращение рациональных дробей.

Сократить дробь - это значит разделить числитель и знаменатель дроби на общий множитель. Возможность такого сокращения обусловлена основным свойством дроби.

Для того чтобы сократить рациональную дробь, нужно числитель и знаменатель разложить на множители. Если окажется, что числитель и знаменатель имеют общие множители, то дробь можно сократить. Если общих множителей нет, то преобразование дроби посредством сокращения невозможно.

Пример. Сократить дробь

Решение. Имеем

Сокращение дроби выполнено при условии .

61. Приведение рациональных дробей к общему знаменателю.

Общим знаменателем нескольких рациональных дробей называется целое рациональное выражение, которое делится на знаменатель каждой дроби (см. п. 54).

Например, общим знаменателем дробей и служит многочлен так как он делится и на и на и многочлен и многочлен и многочлен и т. д. Обычно берут такой общий знаменатель, что любой другой общий знаменатель делится на Еыбранный. Такой простейший знаменатель называют иногда наименьшим общим знаменателем.

В рассмотренном выше примере общий знаменатель равен Имеем

Приведение данных дробей к общему знаменателю достигнуто путем умножения числителя и знаменателя первой дроби на 2. а числителя и знаменателя второй дроби на Многочлены называются дополнительными множителями соответственно для первой и второй дроби. Дополнительный множитель для данной дроби равен частному от деления общего знаменателя на знаменатель данной дроби.

Чтобы несколько рациональных дробей привести к общему знаменателю, нужно:

1) разложить знаменатель каждой дроби на множители;

2) составить общий знаменатель, включив в него в качестве сомножителей все множители полученных в п. 1) разложений; если некоторый множитель имеется в нескольких разложениях, то он берется с показателем степени, равным наибольшему из имеющихся;

3) найтн дополнительные множители для каждой из дробей (для этого общий знаменатель делят на знаменатель дроби);

4) домножив числитель и знаменатель каждой дроби на дополнительный множитель, привести дробн к общему знаменателю.

Пример. Привести к общему знаменателю дроби

Решение. Разложим знаменатели на множители:

В общий знаменатель надо включить следующие множители: и наименьшее общее кратное чисел 12, 18, 24, т. е. . Значит, общий знаменатель имеет вид

Дополнительные множители: для первой дроби для второй для третьей Значит, получаем:

62. Сложение и вычитание рациональных дробей.

Сумма двух (и вообще любого конечного числа) рациональных дробей с одинаковыми знаменателями тождественно равна дроби с тем же знаменателем и с числителем, равным сумме числителей складываемых дробей:

Аналогично обстоит дело в случае вычитания дробей с одинаковыми знаменателями:

Пример 1. Упростить выражение

Решение.

Для сложения или вычитания рациональных дробей с разными знаменателями нужно прежде всего привести дроби к общему знаменателю, а затем выполнить операции над полученными дробями с одинаковыми знаменателями.

Пример 2. Упростить выражение

Решение. Имеем

63. Умножение и деление рациональных дробей.

Произведение двух (и вообще любого конечного числа) рациональных дробей тождественно равно дроби, числитель которой равен произведению числителей, а знаменатель - произведению знаменателей перемножаемых дробей:

Частное от деления двух рациональных дробей тождественно равно дроби, числитель которой равен произведению числителя первой дроби на знаменатель второй дроби, а знаменатель - произведению внаменателя первой дроби на числитель второй дроби:

Сформулированные правила умножения и деления распространяются и на случай умножения или деления на многочлен: достаточно записать этот, многочлен в виде дроби со знаменателем 1.

Учитывая возможность сокращения рациональной дроби, полученной в результате умножения или деления рациональных дробей, обычно стремятся до выполнения этих операций разложить на множители числители и знаменатели исходных дробей.

Пример 1. Выполнить умножение

Решение. Имеем

Использовав правило умножения дробей, получаем:

Пример 2. Выполнить деление

Решение. Имеем

Использовав правило деления, получаем:

64. Возведение рациональной дроби в целую степень.

Чтобы возвести рациональную дробь - в натуральную степень , нужно возвести в эту степень отдельно числитель и знаменатель дроби; первое выражение - числитель, а второе выражение - знаменатель результата:

Пример 1. Преобразовать в дробь степень 3.

Решение Решение.

При возведении дроби в целую отрицательную степень используется тождество справедливое при всех значениях переменных, при которых .

Пример 2. Преобразовать в дробь выражение

65. Преобразование рациональных выражений.

Преобразование любого рационального выражения сводится к сложению, вычитанию, умножению и делению рациональных дробей, а также к возведению дроби в натуральную степень. Всякое рациональное выражение можно преобразовать в дробь, числитель и знаменатель которой - целые рациональные выражения; в этом, как правило, состоит цель тождественных преобразований рациональных выражений.

Пример. Упростить выражение

66. Простейшие преобразования арифметических корней (радикалов).

При преобразовании арифметических корией используются их свойства (см. п. 35).

Рассмотрим несколько примеров на применение свойств арифметических корней для простейших преобразований радикалов. При этом все переменные будем считать принимающими только неотрицательные значения.

Пример 1. Извлечь корень из произведения

Решение. Применив свойство 1°, получим:

Пример 2. Вынести множитель из-под знака корня

Решение.

Такое преобразование называется вынесением множителя из-под знака корня. Цель преобразования - упростить подкоренное выражение.

Пример 3. Упростить .

Решение. По свойству 3° имеем Обычно стараются подкоренное выражение упростить, для чего выносят множители за знак кория. Имеем

Пример 4. Упростить

Решение. Преобразуем выражение, внеся множитель под знак корня: По свойству 4° имеем

Пример 5. Упростить

Решение. По свойству 5° мы имеем право показатель корня и показатель степени подкоренного выражения разделить на одно и то же натуральное число. Если в рассматриваемом, примере разделить указанные показатели на 3, то получим .

Пример 6. Упростить выражения:

Решение, а) По свойству 1° получаем, что для перемножения корней одной и той же степени достаточно перемножить подкоренные выражения и из полученного результата извлечь корень той же степени. Значит,

б) Прежде всего мы должны привести радикалы к одному показателю. Согласно свойству 5° мы можем показатель корня показатель степени подкоренного выражения умножить на одно и то же натуральное число. Поэтому Далее имеем теперь в полученном результате раз делив показатели корня и степени подкоренного выражения На 3, получим .

Целое выражение - это математическое выражение, составленное из чисел и буквенных переменных с помощью действий сложения, вычитания и умножения. Также к целым относятся выражения, которые имеют в своем составе деление на какое либо число, отличное от нуля.

Примеры целого выражения

Ниже представлены несколько примеров целых выражений:

1. 12*a^3 + 5*(2*a -1);

3. 4*y- ((5*y+3)/5) -1;

Дробные выражения

Если же в выражении присутствует деление на переменную или на другое выражение содержащее переменную, то такое выражение не является целым. Такое выражение называется дробным. Дадим полное определение дробного выражения.

Дробное выражение - это математическое выражение, которое помимо действий сложения, вычитания и умножения, выполненных с числами и буквенными переменными, а также деления на число не равное нулю, содержит так же деление на выражения с буквенными переменными.

Примеры дробных выражений:

1. (12*a^3 +4)/a

3. 4*x- ((5*y+3)/(5-y)) +1;

Дробные и целые выражения составляют два больших множества математических выражений. Если эти множества объединить, то получим новое множество, которое называется рациональными выражениями. То есть рациональные выражения это все целый и дробные выражения.

Нам известно, что целые выражения имеют смысл при любых значениях переменных, которые в него входят. Это следует из того, что для нахождения значения целого выражения необходимо выполнять действия, которые всегда возможны: сложение, вычитание, умножение, деление на число отличное от нуля.

Дробные же выражения, в отличии от целых, могут и не иметь смысла. Так как присутствует операция деления на переменную или выражение содержащее переменные, и это выражение может обратится в нуль, а делить на нуль нельзя. Значения переменных, при которых дробное выражение будет иметь смысл, называют допустимыми значениями переменных.

Рациональная дробь

Одним из частных случаев рациональных выражений будет являться дробь, числитель и знаменатель которой многочлены. Для такой дроби в математике тоже существует свое название - рациональная дробь.

Рациональная дробь будет иметь смысл в том случае, если её знаменатель не равен нулю. То есть допустимыми будут являться все значения переменных, при которых знаменатель дроби отличен от нуля.

На данном уроке будут рассмотрены основные сведения о рациональных выражениях и их преобразованиях, а также примеры преобразования рациональных выражений. Данная тема как бы обобщает изученные нами до этого темы. Преобразования рациональных выражений подразумевают сложение, вычитание, умножение, деление, возведение в степень алгебраических дробей, сокращение, разложение на множители и т. п. В рамках урока мы рассмотрим, что такое рациональное выражение, а также разберём примеры на их преобразование.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Основные сведения о рациональных выражениях и их преобразованиях

Определение

Рациональное выражение - это выражение, состоящее из чисел, переменных, арифметических операций и операции возведения в степень.

Рассмотрим пример рационального выражения:

Частные случаи рациональных выражений:

1. степень: ;

2. одночлен: ;

3. дробь: .

Преобразование рационального выражения - это упрощение рационального выражения. Порядок действий при преобразовании рациональных выражений: сначала идут действия в скобках, затем операции умножения (деления), а затем уже операции сложения (вычитания).

Рассмотрим несколько примеров на преобразование рациональных выражений.

Пример 1

Решение:

Решим данный пример по действиям. Первым выполняется действие в скобках.

Ответ:

Пример 2

Решение:

Ответ:

Пример 3

Решение:

Ответ: .

Примечание: возможно, у вас при виде данного примера возникла идея: сократить дробь перед тем, как приводить к общему знаменателю. Действительно, она является абсолютно правильной: сначала желательно максимально упростить выражение, а затем уже его преобразовывать. Попробуем решить этот же пример вторым способом.

Как видим, ответ получился абсолютно аналогичным, а вот решение оказалось несколько более простым.

На данном уроке мы рассмотрели рациональные выражения и их преобразования , а также несколько конкретных примеров данных преобразований.

Список литературы

1. Башмаков М.И. Алгебра 8 класс. - М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

На данном уроке будут рассмотрены основные сведения о рациональных выражениях и их преобразованиях, а также примеры преобразования рациональных выражений. Данная тема как бы обобщает изученные нами до этого темы. Преобразования рациональных выражений подразумевают сложение, вычитание, умножение, деление, возведение в степень алгебраических дробей, сокращение, разложение на множители и т. п. В рамках урока мы рассмотрим, что такое рациональное выражение, а также разберём примеры на их преобразование.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Основные сведения о рациональных выражениях и их преобразованиях

Определение

Рациональное выражение - это выражение, состоящее из чисел, переменных, арифметических операций и операции возведения в степень.

Рассмотрим пример рационального выражения:

Частные случаи рациональных выражений:

1. степень: ;

2. одночлен: ;

3. дробь: .

Преобразование рационального выражения - это упрощение рационального выражения. Порядок действий при преобразовании рациональных выражений: сначала идут действия в скобках, затем операции умножения (деления), а затем уже операции сложения (вычитания).

Рассмотрим несколько примеров на преобразование рациональных выражений.

Пример 1

Решение:

Решим данный пример по действиям. Первым выполняется действие в скобках.

Ответ:

Пример 2

Решение:

Ответ:

Пример 3

Решение:

Ответ: .

Примечание: возможно, у вас при виде данного примера возникла идея: сократить дробь перед тем, как приводить к общему знаменателю. Действительно, она является абсолютно правильной: сначала желательно максимально упростить выражение, а затем уже его преобразовывать. Попробуем решить этот же пример вторым способом.

Как видим, ответ получился абсолютно аналогичным, а вот решение оказалось несколько более простым.

На данном уроке мы рассмотрели рациональные выражения и их преобразования , а также несколько конкретных примеров данных преобразований.

Список литературы

1. Башмаков М.И. Алгебра 8 класс. - М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

    Рациональное выражение алгебраическое выражение, не содержащее радикалов. Другими словам, это одна или несколько алгебраических величин (чисел и букв), соединённых между собой знаками арифметических действий: сложения, вычитания, умножения… … Википедия

    Алгебраическое выражение, не содержащее радикалов и включающее только действия сложения, вычитания, умножения и деления. Напр., a2 + b, x/(y z2) … Большой Энциклопедический словарь

    Алгебраическое выражение, не содержащее радикалов и включающее только действия сложения, вычитания, умножения и деления. Например, a2 + b, х/(у z2). * * * РАЦИОНАЛЬНОЕ ВЫРАЖЕНИЕ РАЦИОНАЛЬНОЕ ВЫРАЖЕНИЕ, алгебраическое выражение, не содержащее… … Энциклопедический словарь

    Алгебраическое выражение, не содержащее радикалов, например a2 + b, х/(у z3). Если входящие в Р. в. буквы считать переменными, то Р. в. задаёт рациональную функцию (См. Рациональная функция) от этих переменных … Большая советская энциклопедия

    Алгебрарическое выражение, не содержащее радикалов и включающее только действия сложения, вычитания, умножения и деления. Напр., а2 + b, х/(y z2) … Естествознание. Энциклопедический словарь

    ВЫРАЖЕНИЕ - первичное математическое понятие, под которым подразумевают запись из букв и чисел, соединённых знаками арифметических действий, при этом могут быть использованы скобки, обозначения функций и т.п.; обычно В формула млн. её часть. Различают В (1)… … Большая политехническая энциклопедия

    РАЦИОНАЛЬНОЕ - (Rational; Rational) термин, используемый для описания мыслей, чувств и действий, согласуемых с разумом; установка, базирующаяся на объективных ценностях, полученных в результате практического опыта.«Объективные ценности устанавливаются в опыте… … Словарь по аналитической психологии

    РАЦИОНАЛЬНОЕ ПОЗНАНИЕ - субъективный образ объективного мира,полученный с помощью мышления. Мышление – активный процесс обобщенного и опосредованного отражения действительности, обеспечивающий открытие на основе чувственных данных ее закономерных связей и их выражение … Философия науки и техники: тематический словарь

    УРАВНЕНИЕ, РАЦИОНАЛЬНОЕ - Логическое или математическое выражение, основанное на (рациональных) предположениях о процессах. Такие уравнения отличаются от эмпирических уравнений тем, что их параметры получаются в результате дедуктивных выводов из теоретических… … Толковый словарь по психологии

    РАЦИОНАЛЬНЫЙ, рациональная, рациональное; рационален, рациональна, рационально. 1. прил. к рационализм (книжн.). Рациональная философия. 2. Вполне разумный, обоснованный, целесообразный. Он внес рациональное предложение. Рациональное… … Толковый словарь Ушакова

    1) Р. а л г е б р а и ч е с к о г о у р а в н е н и я f(x)=0степени п алгебраическое уравнение g(y)=0с коэффициентами, рационально зависящими от коэффициентов f(x), такое, что знание корней этого уравнения позволяет найти корни данного уравнения… … Математическая энциклопедия



gastroguru © 2017