Критерии самопроизвольного протекания химического процесса. Энергия Гиббса

Скорость химической реакции – это изменение количества реагирующего вещества или продукта реакции за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной реакции).

Закон действующих масс : зависимость скорости реакции от концентрации реагирующих веществ. Чем выше концентрация, тем большее число молекул содержится в объеме. Следовательно, возрастает число соударений, что приводит к увеличению скорости процесса.

Кинетическое уравнение – зависимость скорости реакции от концентрации.

Твердые тела равны 0

Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко.

Общий порядок реакции - это сумма показателей степеней концентрации в кинетическом уравнении.

Константа скорости реакции - коэффициент пропорциональности в кинетическом уравнении.

Правило Вант-Гоффа: При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два - четыре раза

Теория активных соударений (ТАС), есть три условия, необходимых для того, чтобы произошла реакция:

    Молекулы должны столкнуться. Это важное условие, однако его не достаточно, так как при столкновении не обязательно произойдёт реакция.

    Молекулы должны обладать необходимой энергией (энергией активации).

    Молекулы должны быть правильно ориентированы относительно друг друга.

Энергия активации - минимальное количество энергии, которое требуется сообщить системе, чтобы произошла реакция.

Уравнение Аррениуса устанавливает зависимость константы скорости химической реакции от температуры

A - характеризует частоту столкновений реагирующих молекул

R - универсальная газовая постоянная.

Влияние катализаторов на скорость реакции.

Катализатор – это вещество, изменяющее скорость химической реакции, но само в реакции не расходуется и в конечные продукты не входит.

При этом изменение скорости реакции происходит за счет изменения энергии активации, причем катализатор с реагентами образует активированный комплекс.

Катализ - химическое явление, суть которого заключается в изменении скоростей химических реакций при действии некоторых веществ (их называют катализаторами).

Гетерогенный катализ - реагент и катализатор находятся в разных фазах - газообразной и твердой.

Гомогенный катализе - реагенты (реактивы) и катализатор находятся в одной фазе - например, оба являются газами или оба растворены в каком-либо растворителе.

Условия химического равновесия

состояние химического равновесия сохраняется до тех пор, пока остаются неизменными условия реакции: концентрация, температура и давление.

Принцип Ле-Шателье: если на систему, находящуюся в равновесии оказано какое-либо внешнее воздействии, то равновесии сместится в сторону той реакции, которое это действие будет ослаблять.

Константа равновесия – это мера полноты протекания реакции, чем больше величина константы равновесия, тем выше степень превращение исходных веществ в продукты реакции.

К р =С пр \С исх

ΔG<0 К р >1 С пр > С исх

ΔG>0 К р <1 С пр <С исх

Энтальпийный иэнтропийный факторы, характеризующие две противоположные тенденции процессов – стремление к объединению, порядку и стремление к разъединению, беспорядку, взятые по отдельности не могут быть критериями самопроизвольного течения химических реакций. Для изобарно-изотермических процессов их объединяет функция, называемая изменением энергии Гиббса при протекании процесса или изобарно-изотермическим потенциалом (ΔG), равная:

Данное уравнение можно записать в виде:

Как видно, тепловой эффект химической реакции включает в себя две части. Первая часть ΔG равна максимальной работе W max , которую может совершить система при равновесном проведении процесса в изобарно-изотермических условиях. Следовательно, изменение энергии Гиббса реакции – это часть энергетического эффекта химической реакции, которую можно превратить в работу:

Поскольку изменение энергии Гиббса реакции можно превратить в работу, то ее также называют свободной энергией. Второй член правой части уравнения (энтропийный фактор) представляет собой часть энергетического эффекта которую можно превратить в теплоту, рассеивающуюся в окружающую среду. Поэтому энтропийный фактор называют связанной энергией.

Изменение энергии Гиббса служит критерием самопроизвольного протекания химических реакций при изобарно-изотермический процессах. Химическая реакция принципиально возможна, если энергия Гиббса системы уменьшается, т.е.

ΔG< 0.

Данное уравнение является условием возможности самопроизвольного течения реакции в прямом направлении. Химическая реакция не может протекать самопроизвольно, если энергия Гиббса системы возрастает, т.е.

ΔG> 0.

Это уравнение служит термодинамическимусловием возможности самопроизвольного протекания обратной реакции. Если

то система находится в равновесии, реакция протекает как в прямом, так и в обратном направлениях.

Направление химических реакций зависит от их характера. Так условие ΔG<0соблюдается при любой температуре для экзотермических реакций (ΔH<0), у которых в ходу реакции возрастает число молей газообразных веществ, и.следовательно, энтропия (ΔS>0).У таких реакций обе движущие силы направлены в сторону протекания прямой реакции и ΔG<0 при любых температурах. Такие реакции самопроизвольно могут идти только в прямом направлении, т.е. являются необратимыми.

Наоборот эндотермическая реакция (ΔН > 0), в ходе которой уменьшается число молей газообразных веществ (ΔS<0), не может протекать самопроизвольно в прямом направлении при любой температуре, т.к. всегда ΔG> 0.

Возможность протекания многих реакций зависит от температуры, так как температура влияет на знак изменения энергии Гиббса этих реакций. Если в результате экзотермической реакции (ΔH<0) уменьшается число молей газообразных веществ и соответственно энтропия системы (ΔS<0), то при вы невысоких температурах |ΔH| > |ТΔS| и реакция может протекать самопроизвольно в прямом направлении (ΔG< 0). При высоких же температурах |ΔH|<|ТΔS| и прямая реакция протекать не может, а обратная возможна.

Для определения температуры, выше которой происходит смена знака изменения энергии Гиббса реакции, можно воспользоваться условием:

где Т р – температура, при которой устанавливается равновесие, т.е. равновероятна возможность протекания прямой и обратной реакций.

Если в результате эндотермической реакции (ΔH> 0) увеличивается число молей газообразных веществ (ΔS> 0), то при невысоких температурах, когда |ΔH| > |TΔS|, самопроизвольно прямая реакция идти не может(ΔG> 0), а при высоких температурах (T>T p) прямая реакция может протекать самопроизвольно (ΔG< 0).

Таблица 3. Влияние температуры на направление химических реакций

ΔH ΔS ΔG Направление реакции Пример
ΔH<0 ΔS>0 ΔG<0 Прямая реакция может протекать самопроизвольно при любых температурах С + 1/2О 2 = СО
ΔH>0 ΔS<0 ΔG>0 Прямая реакция не может идти самопроизвольно при любых температурах СО = С + 1/2О 2
ΔH<0 ΔS<0 ΔG<0 при Т0 при Т>T p Самопроизвольно может идти прямая реакция при низких температурах и обратная при высоких температурах СаО + СО 2 = СаСО 3
ΔH>0 ΔS>0 ΔG>0 при ТT p Самопроизвольно может протекать прямая реакция при высоких температурах и обратная при низких температурах СН 4 + 2Н 2 О(г) = СО 2 +4Н 2

Энергия Гиббса является функцией состояния и не зависит от способа проведения процесса, а определяется только исходным и конечным состоянием системы. Изменение энергии Гиббса реакции подчиняется закону Гесса и следствиям из него, поэтому его можно рассчитать по уравнению:

Энергия Гиббса образования простых веществ равна нулю. Если вещество находится с стандартном состояние, то энергия Гиббса его образования носит название стандартной энергии Гиббса образования данного вещества и обозначается ΔG 0 . Связь между ΔGи ΔG 0 выражается уравнением, получившим название изотермы Вант-Гоффа:

где R – универсальная газовая постоянная, Т – температура, К р - константа равновесия. Для реакции

аА +bB = cC + dD

уравнение можно записать в виде:

либо в виде:

Для реакций, идущих в изохорно-изотермических условиях, существует другой критерий самопроизвольности течения процесса. Максимальная работаW max , которую может совершить система при равновесном проведении процесса в изохорно-изотермических условиях, равна изменению энергии Гельмгольца системы ΔF (изохорно-изотермический потенциал):

ΔF = -W max .

Изменение энергии Гельмгольца реакции равно

Изменение энергии Гельмгольца характеризует направление и предел самопроизвольного течения химической реакции при изохорно-изотермических условиях, которое возможно при соблюдении неравенства

ΔF< 0.

Соотношение между термодинамическими функциями показано на рис. 2.13.

ΔН ΔU pΔV TΔS ΔF TΔS ΔG

Рис. 2.13Соотношение термодинамических функций

Термодинамические потенциалы имеют большое значение при определении так называемого химического сродства . Опытным путем было установлено, что одни химические вещества реагируют друг с другом легко и быстро, другие - с трудом, третьи вовсе не реагируют. Это дало повод к тому, чтобы ввести представление о химическом сродстве, которое можно определить как способность различных веществ реагировать друг с другом.

Что же является мерой химического сродства? Ответ на этот вопрос оказался непростым. Первоначально предполагали, что за меру химического сродства можетбыть принята скорость протекания реакции между данными веществами. Но от этого предположения пришлось отказаться хотя бы уже потому, что скорость реакции зависит не только от химических свойств реагентов и параметров, при которых протекает реакция, но и от присутствия катализаторов - веществ, сколько-нибудь заметно в реакции не участвующих, но могущих весьма существенно влиять на ее скорость. Второе предположение заключалось в том, что химическое сродство зависит от теплового эффекта реакции. Но и это предположение не выдержало проверки, так как в разных реакциях тепловые эффекты имеют различные знаки.

Наконец, было установлено, что мера химического сродства лучше всего определяется изменением (уменьшением) термодинамического потенциала в результате реакции. Таким образом, термодинамические потенциалы имеют очень большое практическое значение в химии. Вычисляя термодинамические потенциалы, можно определить меры химического сродства различных веществ, возможность проведения химической реакции и ее пределы (равновесный состав) в зависимости от внешних условий и прежде всего от температуры.

Вопросы для самоконтроля

1. В чем отличия характера изменения энтальпии системы при экзо- и эндотермическом процессе.

2. Как влияет прочность химических связей в продуктах реакции и исходных веществах на тепловой эффект реакции.

3. Сформулируйте понятие «энтальпия (теплота) образования вещества»

4. а) Почему химические и фазовые превращения сопровождаются выделением или поглощением энергии?

5. Сформулируйте понятие теплоемкости.

6. Сформулируйте I, II и III начала термодинамики.

Тема 3.


Похожая информация.


Из этого следует, что в изобарно-изотермических условиях в изолированной системе самопроизвольно протекают те процессы, которые сопровождаются увеличением энтропии.

Действительно, в изолированной системе теплообмен невозможен, следовательно, DH = 0 и DG » -T×DS. Отсюда видно, что если DS>0, то DG < 0 и, следовательно, процесс может самопроизвольно протекать в прямом направлении.

Другая формулировка II закона термодинамики:

Невозможен некомпенсированный переход теплоты от менее нагретых тел к более нагретым.

Вычислить свободную энергию реакции (изменение свободной энергии реакции) можно не только по уравнению Гиббса (16), но и по свободным энергиям Гиббса образования веществ (табличные данные).

Стандартным изменением энергии Гиббса (энергией Гиббса) образования вещества называется изменение энергии Гиббса образования 1 моль вещества в стандартном состоянии из соответствующих простых веществ, также взятых в стандартных состояниях. При этом стандартные энергии Гиббса образования простых веществ в наиболее устойчивых их формах принимаются равными нулю: ΔG o обр. (Н 2) = 0; ΔG o обр. (О 2) = 0.

Рассчитывая энтропию и энергию Гиббса химических реакций, руководствуются законом Гесса.

Так, для реакции:

aA + bB = cC + dD

(17)
(18)

Процессы, в которых энергия Гиббса убывает ΔG р-я < 0, называются экзэргоническими, а при которых энергия Гиббса возрастает ∆G р-я > 0, называются эндэргоническими, самопроизвольно они не протекают.

Эндэргонические процессы реализуются в природе в том случае, если они сопряжены с какими-то экзэргоническими реакциями:

Например, в организме реализуется реакция:

глюкоза + фруктоза = сахароза + вода; ΔG 0 р-я = +21 кДж.

Это эндэргоническая реакция, т.к. ΔG o р-я > 0. Она сопряжена с экзэргонической реакцией:

АТФ + Н 2 О = АДФ + Н 3 РО 4 ; ΔG o р-я = ‑30,5 кДж.

В таблице 1 показана возможность (или невозможность) самопроизвольного протекания реакции при различных сочетаниях знаков DH и DS.

Развитие растений и животных происходит самопроизвольно, сопровождается образованием более сложных структур и, следовательно, приводит к уменьшению энтропии, ΔS < 0. Это возможно только потому, что неограниченно используется энергия Солнца, и энтальпийный фактор преодолевает противодействующий развитию энтропийный фактор.

Биоэнергетика

В процессе жизнедеятельности организм человека получает и расходует энергию. Даже в состоянии покоя организм взрослого человека расходует около 6000 кДж теплоты в сутки, что компенсируется энергией от принимаемой пищи. Эта минимальная энергия метаболизма сопоставима с энергией электрической лампочки мощностью 70 Вт.

Любое движение организма, любая работа, даже пищеварение, усиливают выделение тепла. Так, при лёгкой физической работе человеку необходимо 8400-12000 кДж в сутки, а при тяжелой - 16700-20900 кДж в сутки.

Установлено, что при окислении 1 г основных питательных веществ выделяются следующие количества теплоты: жиров - 39,5 кДж, углеводов - 17,1 кДж, белков - 22,3 кДж.

Для поддержания энергетического баланса человеку требуется количество энергии, равное отданной теплоте. Зная состав отдельных питательных веществ и их энтальпии сгорания, можно рассчитать количество необходимых для питания человека продуктов. При избыточном или нерациональном потреблении питательных веществ часть продуктов не усваивается и откладывается организмом в депо в виде жировой подкожной клетчатки, вызывая ожирение.

Рассмотрим в качестве примера ситуационную задачу.

Ситуационная задача №1

Дама, соблюдающая фигуру, на вечеринке не удержалась и съела в составе торта 40 г жиров и 60 г углеводов. Рассчитать количество энергии, которое выделится в организме этой женщины, и время, в течение которого дама должна заниматься аэробикой, чтобы скомпенсировать излишества. Расход энергии при занятиях аэробикой составляет 1420 кДж/час.

Решение.

Общее количество энергии (теплоты), выделившейся в организме этой женщины, равно:

40×39,5 + 60×17,1 = 2606 кДж.

Поделив количество энергии на расход, получим:

Ответить на этот вопрос можно и при помощи следствий из закона Гесса. Если считать условия в организме человека близкими к стандартным, а окисление углеводов (например, глюкозы) предельным и протекающим по уравнению:

С 6 H 12 O 6(тв.) + 6O 2(газ) = 6CO 2(газ) + 6H 2 O (жидк.) ,

то согласно I следствию из закона Гесса:

= (6× CO 2 + 6× H 2 O) - С 6 H 12 O 6 =

= (6×(-394) + 6×(-286)) - (-1274) = -2806 кДж/моль.

Стандартное значение энтальпии реакции соответствует превра-щению 1 моль вещества. В случае, когда превращению подвергается иное количество вещества, энтальпия реакции равна:

где n - количество вещества.

В данном случае количество глюкозы равно:

,

а количество энергии (энтальпия реакции):

DH = 0,33×(-2806) » -926 кДж.

Главным источником энергии для многих биологических процессов - от биосинтеза белка и ионного транспорта до сокращения мышц и электрической активности нервных клеток - является реакция гидролиза АТФ:

АТФ + H 2 O = АДФ + Н 3 РО 4 ; DG 0 = -30,5 кДж/моль

Эта реакция является экзэргонической, при стандартных условиях протекает в прямом направлении с выделением энергии.

В некоторых случаях возможно протекание в прямом направлении и эндэргонических реакций. Так, реакция прямого фосфорилирования глюкозы с образованием глюкозо-6-фосфата является эндэргонической:

1) Глюкоза + Н 3 РО 4 Глюкозо-6-фосфат + Н 2 О;

ΔG 0 = +13,8 кДж/моль

Для протекания такой реакции в прямом направлении необходимо её сопряжение с экзэргонической реакцией (2), величина свободной энергии которой по модулю больше, чем требуется для фосфорилирования глюкозы:

2) АТФ + H 2 O АДФ + Н 3 РО 4 ΔG 0 = -30,5 кДж/моль.

При сопряжении процессов (1) и (2) фосфорилирование глюкозы легко протекает в физиологических условиях:

3) Глюкоза + АТФ Глюкозо-6-фосфат + АДФ

ΔG 0 = -16,7 кДж/моль.


Примеры решения задач

Задача №1

Некоторая реакция протекает с уменьшением энтропии. Определить, при каком условии возможно самопроизвольное протекание данной реакции.

Решение.

Условием самопроизвольного протекания реакции является уменьшение свободной энергии Гиббса, т.е. DG < 0. Изменение DG можно рассчитать по формуле:

Так как в ходе реакции энтропия уменьшается (DS < 0), то энтропийный фактор препятствует самопроизвольному протеканию данной реакции. Таким образом, самопроизвольное протекание данной реакции может обеспечить только энтальпийный фактор. Для этого необходимо выполнение следующих условий:

1) DH < 0 (реакция экзотермическая);

2) .

Задача №2

Эндотермическая реакция разложения протекает самопроиз-вольно. Оценить изменение энтальпии, энтропии и величины свободной энергии Гиббса.

Решение.

1) Так как реакция эндотермическая, то DH > 0.

2) В реакциях разложения энтропия возрастает, следовательно DS > 0.

3) Самопроизвольное протекание реакции означает, что DG < 0.

Задача №3

Вычислить стандартную энтальпию хемосинтеза, протекающего в бактериях Thiobacillus denitrificans:

6KNO 3(тв.) + 5S (тв.) + 2CaCO 3(тв.) = 3K 2 SO 4(тв.) + 2CaSO 4(тв.) + 2CO 2(газ) + 3N 2(газ)

по значениям стандартных энтальпий образования веществ:

Определить, к какому типу (экзо- или эндотермическому) относится эта реакция.

Решение.

Запишем выражение первого следствия из закона Гесса с учетом того, что стандартные энтальпии образования серы и азота равны нулю:

= (3× K 2 SO 4 + 2× CaSO 4 + 2× CO 2) -

- (6× KNO 3 + 2× CaCO 3) = 3×(-1438) + 2×(-1432) +

2×(-393,5) - = -2593 кДж.

Так как < 0, то реакция экзотермическая.

Задача №4

Вычислить стандартную энтальпию реакции:

2C 2 H 5 OH (жидк.) = C 2 H 5 OC 2 H 5(жидк.) + H 2 O (жидк.)

по значениям стандартных энтальпий сгорания веществ:

C 2 H 5 OH = -1368 кДж/моль;

C 2 H 5 OC 2 H 5 = -2727 кДж/моль.

Решение.

Запишем выражение второго следствия из закона Гесса с учётом того, что стандартная энтальпия сгорания воды (высший оксид) равна нулю:

2× C 2 H 5 OH - C 2 H 5 OC 2 H 5 =

2× (-1368) - (-2727) = -9 кДж.

Следствия из закона Гесса позволяют вычислять не только стандартные энтальпии реакций, но и величины стандартных энтальпий образования и сгорания веществ по косвенным данным.

Задача №5

Определить стандартную энтальпию образования оксида углерода (II) по следующим данным:

Решение.

Из уравнения (1) видно, что стандартное изменение энтальпии данной реакции соответствует стандартной энтальпии образования CO 2 .

Запишем выражение первого следствия из закона Гесса для реакции (2):

CO = CO 2 - .

Подставим значения и получим:

CO = -293,5 - (-283) = -110,5 кДж/моль.

Эту задачу можно решить и другим способом.

Вычитая из первого уравнения второе, получим:

Задача №6

Вычислить стандартную энтропию реакции:

CH 4(газ) + Cl 2(газ) = CH 3 Cl (газ) + HCl (газ) ,

по значениям стандартных энтропий веществ:

Решение.

Стандартную энтропию реакции вычислим по формуле (17):

= ( CH 3 Cl + HCl) - ( CH 4 + Cl 2) = 234 + 187 - (186 +
+ 223) = 12 Дж/(моль×K).

Задача №7

Вычислить стандартную энергию Гиббса реакции:

C 2 H 5 OH (жидк.) + H 2 O 2(жидк.) = CH 3 COH (газ) + 2H 2 O (жидк.)

по следующим данным:

Определить, возможно ли самопроизвольное протекание данной реакции при стандартных условиях.

Решение.

Стандартную энергию Гиббса реакции вычислим по формуле (18):

= ( CH 3 COH + 2× H 2 O) - ( C 2 H 5 OH + H 2 O 2) = -128 + 2× (-237) - [(-175) + (-121)] = -306 кДж/моль.

Так как < 0, то самопроизвольное протекание данной реакции возможно.

С 6 H 12 O 6(тв.) + 6O 2(газ) = 6CO 2(газ) + 6H 2 O (жидк.) .

по известным данным:

Решение.

Значения стандартных энтальпии и энтропии реакции рассчитаем при помощи первого следствия из закона Гесса:

6× CO 2 + 6× H 2 O - С 6 H 12 O 6 - 6 O 2 =

6×(-393,5) + 6×(-286) - (-1274,5) - 6×0 = -2803 кДж;

6× СО 2 + 6× H 2 O - С 6 H 12 O 6 - 6× O 2 =

6×214 + 6×70 - 212 - 6×205 = 262 Дж/K = 0,262 кДж/K.

Стандартную энергию Гиббса реакции найдем из соотношения:

T× = -2803 кДж - 298,15 K×0,262 кДж/K =

Задача №9

Вычислить стандартную энергию Гиббса реакции гидратации сывороточного альбумина при 25 0 С, для которой DH 0 = -6,08 кДж/моль; DS 0 = -5,85 Дж/(моль×K). Оценить вклад энтальпийного и энтропийного фактора.

Решение.

Стандартную энергию Гиббса реакции рассчитаем по формуле:

DG 0 = DH 0 - T×DS 0 .

Подставив значения, получим:

DG 0 = -6,08 кДж/моль - 298 K×(-5,85×10 - 3) кДж/(моль×K) =

4,34 кДж/моль.

В данном случае энтропийный фактор препятствует протеканию реакции, а энтальпийный - способствует. Самопроизвольное протекание реакции возможно при условии, если , т.е., при низких температурах.

Задача №10

Определить температуру, при которой самопроизвольно пойдет реакция денатурации трипсина, если = 283 кДж/моль, = 288 Дж/(моль×K).

Решение.

Температуру, при которой равновероятны оба процесса найдём из соотношения:

В данном случае энтальпийный фактор препятствует протеканию реакции, а энтропийный - способствует. Самопроизвольное проте-кание реакции возможно при условии, если:

Таким образом, условием самопроизвольного протекания процесса является T > 983 K.


Вопросы для самоконтроля

1. Что такое термодинамическая система? Какие типы термодина-мических систем вы знаете?

2. Перечислите известные Вам термодинамические параметры. Какие из них относятся к измеряемым? Какие к неизмеряемым?

3. Что такое термодинамический процесс? Как называются процессы, протекающие при постоянстве одного из параметров?

4. Какие процессы называют экзотермическими? Какие эндотер-мическими?

5. Какие процессы называют обратимыми? Какие необратимыми?

6. Что понимают под термином «состояние системы»? Какие бывают состояния системы?

7. Какие системы изучает классическая термодинамика? Сформулируйте первый и второй постулаты термодинамики.

8. Какие переменные называют функциями состояния? Перечислите известные вам функции состояния.

9. Что такое внутренняя энергия? Можно ли измерить внутрен-нюю энергию?

10. Что такое энтальпия? Какова её размерность?

11. Что такое энтропия? Какова её размерность?

12. Что такое свободная энергия Гиббса? Как её можно вычислить? Что можно определить при помощи этой функции?

13. Какие реакции называют экзэргоническими? Какие эндэрго-ническими?

14. Сформулируйте первый закон термодинамики. В чем заключается эквивалентность теплоты и работы?

15. Сформулируйте закон Гесса и следствия из него. Что такое стандартная энтальпия образования (сгорания) вещества?

16. Сформулируйте второй закон термодинамики. Какие процессы самопроизвольно протекают в изолированной системе?


Варианты задач для самостоятельного решения

Вариант № 1

1. Вычислить стандартную энтальпию реакции хемосинтеза, протекающую в бактериях Nitrosomonas:

NH 3(газ) + 1,5O 2(газ) = HNO 2(р-р) + H 2 O (жидк.) ,

С 2 H 6(газ) + H 2(газ) = 2CH 4(газ) ,

используя следующие значения:

3. Вычислить стандартную энергию Гиббса реакции гидратации b-лактоглобулина при 25 0 С, для которой DH 0 = -6,75 кДж, DS 0 = -9,74 Дж/K.

Вариант №2

1. Вычислить стандартную энтальпию реакции окисления твёрдого глицина:

NH 2 CH 2 COOH (тв) + 1,5O 2(газ) = 2СO 2(газ) + H 2 O (жидк.) + NH 3(газ) ,

используя значения стандартных энтальпий образования веществ:

Экзо- или эндотермической является эта реакция?

С 2 H 2(газ) + 2H 2(газ) = C 2 H 6(газ) ,

используя следующие значения:

3. Вычислить стандартную энергию Гиббса реакции тепловой денатурации химотрипсиногена при 50 0 С, для которой DH 0 = 417 кДж, DS 0 = 1,32 кДж/K. Оценить вклад энтальпийного и энтропийного фактора. Определить температуру, при которой возможен данный процесс.

С 12 H 22 O 11(р-р) + 12O 2(газ) = 12CO 2(газ) + 11H 2 O (жидк.) ,

2. Вычислить стандартную энтальпию реакции гидрирования бензола до циклогексана двумя способами, т.е., используя значения стандартных энтальпий образования и сгорания веществ:

Экзо- или эндотермической является эта реакция?

3. Оценить возможность самопроизвольного протекания реакции превращения пировиноградной кислоты в уксусный альдегид и оксид углерода (IV):

CH 3 COCOOH (р - р) = CH 3 COH (газ) + CO 2(газ)

Оценить вклад энтальпийного и энтропийного фактора. Определить температуру, при которой возможен данный процесс.

Вариант №4

1. Вычислить стандартную энтальпию хемосинтеза, протекаю-щего в автотрофных бактериях Beggiatoa и Thiothrix, по стадиям и суммарно:

2H 2 S (газ) + O 2(газ) = 2H 2 O (жидк.) + 2S (тв.) ;

2S (тв.) + 3O 2(газ) + 2H 2 O (жидк.) = 2H 2 SO 4(жидк.) ,

2. Вычислить стандартную энтальпию и энтропию реакции:

3C 2 H 2(газ) = C 6 H 6(жидк.) ,

используя следующие данные:

Экзо- или эндотермической является эта реакция?

3. Оценить роль энтальпийного и энтропийного факторов для реакции гидролиза мочевины:

CO(NH 2) 2 (р-р) + Н 2 О (жидк.) = 2NH 3 (р-р) + СО 2 (р-р)

по известным данным:

Определить температуру, при которой реакция пойдет самопроизвольно.

Вариант №5

1. Вычислить стандартную энтальпию реакции окисления глицина в растворе:

2NH 2 CH 2 COOH (р-р) + 3O 2(газ) = СO(NH 2) 2(р-р) + 3H 2 O (жидк.) + 3CO 2(газ) ,

используя значения стандартных энтальпий образования веществ:

Экзо- или эндотермической является эта реакция?

2. Вычислить стандартную энтальпию реакции:

С 6 H 5 NO 2(жидк.) + 3H 2(газ) = С 6 H 5 NH 2(жидк.) + 2H 2 O (жидк.) ,

используя значения стандартных энтальпий сгорания веществ:

Экзо- или эндотермической является эта реакция?

3. Вычислить стандартную энергию Гиббса реакции денатурации трипсина при 50 0 С, для которой DH 0 = 283 кДж, DS 0 = 288 Дж/K. Оценить вклад энтальпийного и энтропийного фактора. Определить температуру, при которой возможен данный процесс.

Вариант №6

1. Вычислить стандартную энтальпию хемосинтеза, протекаю-щего в автотрофных бактериях Thiobacillus Thioparus:

5Na 2 S 2 O 3 ×5H 2 O (тв.) + 7O 2(газ) = 5Na 2 SO 4(тв.) + 3H 2 SO 4(ж.) + 2S (тв.) + 22H 2 O (ж.) ,

Экзо- или эндотермической является эта реакция?

2. Вычислить стандартную энтальпию и энергию Гиббса реакции:

CH 3 COH (жидк.) + H 2(газ) = C 2 H 5 OH (жидк.)

по следующим данным:

3. Определить возможность самопроизвольного протекания реакции гидролиза дипептида глицил-глицина:

NH 2 CH 2 CONHCH 2 COOH (р - р) + H 2 O (жидк.) = 2NH 2 CH 2 COOH (р-р)

глицил-глицин

при стандартных условиях, если:

Оценить вклад энтальпийного и энтропийного фактора. Определить температуру, при которой возможен данный процесс.

Вариант №7

1. Вычислить стандартную энтальпию образования CH 3 OH по следующим данным:

CH 3 OH (жидк.) + 1,5O 2(газ) = CO 2(газ) + 2H 2 O (жидк.) DH 0 = -726,5 кДж;

С (графит) + O 2(газ) = CO 2(газ) DH 0 = -394 кДж;

H 2(газ) + 0,5O 2(газ) = H 2 O (жидк.) DH 0 = -286 кДж.

2. Вычислить стандартную энтальпию сгорания сероуглерода CS 2 по следующим данным:

CS 2(жидк.) + 3O 2(газ) = CO 2(газ) + 2SO 2(газ) DH 0 = -1078 кДж;

SO 2(газ) + 0,5O 2(газ) = SO 3(газ) DH 0 = -98 кДж.

3. Вычислить DG 0 процесса:

АТФ + аланин + глицин = АДФ + Н 3 РО 4 + аланилглицин,

если известно:

АТФ + H 2 O = АДФ + Н 3 РО 4 DG 0 = –30,5 кДж/моль;

аланин + глицин = аланилглицин + H 2 O DG 0 = 17,2 кДж/моль.

Определить направление протекания процесса.

Вариант №8

1. Вычислить значение DH 0 для возможных реакций превращения глюкозы:

1) C 6 H 12 O 6(р - р) = 2C 2 H 5 OH (р - р) + 2CO 2(газ) ;

2) C 6 H 12 O 6(р-р) = 2С 3 H 6 O 3(р-р) .

по известным данным:

В результате какой из этих реакций выделяется большее количество энергии?

2. Вычислить стандартную энтальпию и энтропию реакции:

С 3 H 6(газ) + H 2(газ) = С 3 H 8(газ) ,

используя следующие значения:

3. Оценить возможность самопроизвольного окисления хлороформа CHCl 3 кислородом воздуха:

CHCl 3 (газ) + O 2(газ) = CO 2(газ) + HCl (газ) + Cl 2 (газ) ,

при стандартных условиях, если:

Оценить вклад энтальпийного и энтропийного фактора. Определить температуру, при которой возможен данный процесс.

Вариант №9

1. Вычислить стандартную энтальпию образования Ca 3 (PO 4) 2 по следующим данным:

3CaO (тв.) + P 2 O 5(тв.) = Ca 3 (PO 4) 2(тв.) DH 0 = -739 кДж;

P 4(тв.) + 5O 2(газ) = 2P 2 O 5(тв.) DH 0 = -2984 кДж;

Ca (тв.) + 0,5O 2(газ) = CaO (тв.) DH 0 = -636 кДж.

2. При растворении 49 г серной кислоты в 800 г воды температура раствора повысилась на 11,8 0 С. Принимая удельную теплоёмкость раствора, равной 3,76 Дж/(г×K), рассчитать стандартную энтальпию растворения серной кислоты.

3. Оценить возможность самопроизвольного протекания реакции:

2CO (газ) + 2H 2 O (жидк) = CH 3 COOH (жидк) + O 2(газ) ,

при стандартных условиях, если:

Оценить вклад энтальпийного и энтропийного фактора. Определить температуру, при которой возможен данный процесс.

Вариант №10

1. Вычислить стандартную энтальпию образования этанола по следующим данным:

DH 0 сгор. C 2 H 5 OH (жидк.) = -1368 кДж/моль;

С (графит) + O 2(газ) = CO 2(газ) +394 кДж;

H 2(газ) + 0,5O 2(газ) = H 2 O (жидк.) +286 кДж.

2. Вычислить стандартную энтальпию и энергию Гиббса реакции:

C 4 H 8(газ) + 2O 2(газ) = 2CH 3 COOH (жидк.)

по следующим данным:

3. Вычислить стандартную энергию Гиббса реакции гидратации яичного альбумина при 25 0 С, для которой DH 0 = -6,58 кДж/моль, DS 0 = -9,5 Дж/(моль×К). Оценить вклад энтальпийного и энтропийного фактора. Определить температуру, при которой возможен данный процесс.

Вариант №11

1. Вычислить стандартную энтальпию реакции:

4NH 3(газ) + 5O 2(газ) = 4NO (газ) + 6H 2 O (газ) ,

используя значения стандартных энтальпий образования веществ:

Экзо- или эндотермической является эта реакция?

2. В организме человека окисление этанола протекает в две стадии:

1) C 2 H 5 OH (р-р) + 0,5O 2(газ) = CH 3 COH (р-р) + H 2 O (жидк.) DH 0 = -256 кДж;

2) CH 3 COH (р - р) + 0,5O 2(газ) = CH 3 COOH (р - р) DH 0 = -237 кДж.

3. При 37 0 C величины DH 0 и DG 0 для гидролиза АТФ равны соответственно +24,3 и -30,5 кДж/моль. Вычислить стандартную энтропию этой реакции и определить температуру, при которой возможен данный процесс.

Вариант №12

1. В ходе реакции окисления аммиака

4NH 3(газ) + 3O 2(газ) = 2N 2(газ) + 6H 2 O (жидк.)

образовалось 2,24 л азота и при этом выделилось 76,5 кДж теплоты. Вычислить NH 3 , если H 2 O = -286 кДж/моль.

2. Вычислить стандартную энтальпию и энтропию реакции:

СO (газ) + 3H 2(газ) = СH 4(газ) + H 2 O (газ) ,

используя следующие значения:

3. Определить направление протекания процесса.

Итак, имеем два критерия возможности самопроизвольного протекания химического процесса – изменение энтальпии DН, которое отражает взаимодействие атомов, образование химических связей, то есть определенное упорядочение системы и изменение энтропии DS, которое отражает противоположную тенденцию к беспорядочному расположению частиц. Если DS=0, то движущей силой процесса будет стремление системы к минимуму внутренней энергии, то есть критерий процесса – уменьшение энтальпии или DН<0.

Если DН=0, то критерий самопроизвольного протекания процесса DS>0.

Чтобы иметь возможность количественно сопоставить эти два критерия, нужно, чтобы они выражались в одинаковых единицах (DН – кДж, DS – Дж/К). Очевидно, чтобы выразить энтропийный фактор в единицах энергии, его нужно домножить на температуру. Это тем более логично, что повышение Т способствует увеличению беспорядка в системе. Тогда ТDS – энтропийный фактор процесса, DН – энтальпийный. В состоянии равновесия оба этих фактора должны быть равны:

DН= ТDS . (8.12)

Это уравнение универсально, оно относится и к равновесию жидкость – пар и к другим фазовым превращениям, а также к химическим реакциям. Благодаря этому равенству можно рассчитать изменение энтропии в равновесном процессе, так как при равновесии:

Однако нас интересует количественный критерий принципиальной возможности протекания процесса. В механике критерий падения тела это уменьшение его гравитационного потенциала, который не зависит от пути перемещения тела. По аналогии химический процесс можно охарактеризовать своим потенциалом, который должен уменьшаться в ходе самопроизвольного процесса. Этот потенциал при постоянной температуре и давлении принято называть изобарно – изотермическим потенциалом Гиббса G. Убыль этого потенциала не зависит от пути процесса и равна максимальной работе, которую можно получить, переходя от данного состояния к равновесному (за вычетом работы против внешнего давления).

DG=W р max . (8.13)

То есть энергия Гиббса – это часть энергетического эффекта химической реакции, которую можно превратить в работу, ее называют свободной энергией.

В таком случае условием возможности протекания процесса будет DG<0, но поскольку в состоянии равновесия DG=0, то из уравнения (1) получаем:

DG=DН - ТDS , (8.14)

Таким образом, мы определяем G=Н – ТS и можем нарисовать его изменение в ходе процесса (рисунок 8.5):

где А – исходные вещества;

В – продукты реакции.

В левой части графика (8.5) – уменьшение значения G, идет прямая реакция. Для нее DG<0. Справа от положения равновесия идет обратная реакция, для нее DG<0. В состоянии равновесия DG=0.

Как влияют величины энтальпийного и энтропийного фактора на протекание процесса?

Возможны следующие случаи (рисунок 8.6):

1) экзотермическая реакция, DН<0:

а) DS>0, тогда для любого Т DG будет меньше нуля и процесс идет всегда, причем до конца;

б) DS<0, в этом случае все будет зависеть от соотношения абсолютных значений энтальпийного и энтропийного фактора, DG<0 – реакция идет, DG>0 – реакция не идет.

Экзотермические реакции, сопровождаются уменьшением энтропии, идут при низких температурах, увеличение Т способствует протеканию обратной реакции (Принцип Ле Шателье).

2) Эндотермическая реакция, DН>0:

а) DS>0, реакция возможна только если | ТDS|>|DН|, тогда DG>0, то есть при высоких температурах;

б) если же, DS<0, то DG>0 при любых температурах и процесс самопроизвольно идти не может.

Пример – реакция окисления глюкозы до CO 2 и H 2 O:

С 6 Н 12 О 6 + 6О 2 ®6СО 2 + 6Н 2 О DН= - 2810 кДж.

Энтропия при этом, очевидно, возрастает. Следовательно, обратный процесс принципиально не может идти самопроизвольно. Для его протекания требуется энергия извне (фотосинтез).

Следует отметить, что в вопросе о возможности протекания процесса термодинамический критерий – истина в последней инстанции. Если изменение значения энергии Гиббса положительные DG>0, никакие катализаторы не помогут провести процесс. При изменении значения энергии Гиббса отрицательные DG<0 процесс может быть заморожен.

До сих пор рассматривали процессы, протекающие при постоянном давлении. Если обратиться к процессам, протекающим при постоянном объеме, получим другое значение термодинамического потенциала – потенциал Гельмгольца:

DF = DU - ТDS , (8.15)

Для решения вопроса о возможности протекания процесса, для расчетов энергии Гиббса DG необходимо установить, от чего она зависит и стандартизировать ее.

Значении DН зависит от температуры и давления и в первом приближении мы считаем, что эта зависимость незначительна и пользуемся стандартными значениями DН°. значение DS кроме давления и температуры зависит еще от концентрации (S=S° - RlnC), следовательно, значение DG также будет зависеть от концентрации реагирующих веществ, а они в ходе процесса меняются. Рассмотрим эту зависимость.

аА®bВ (для простоты)

DG=DН - ТDS, как для всякой реакции.

Считая, что DН слабо зависит от Т, DН = DН° = bDН° f (B) - aDН° f (A),

DS = bS(B) – aS(A) = b(S° B – Rln(B)) – a(S° A – Rln(A)),

Перегруппировав и вспомнив свойства логарифмов получим:

DS= S° - Rln(B b /A a) ,

Подставив в уравнение для DG, получим

DG=DН° - ТDS° + Rln(B b /A a) = DG + RTln(B b /A a), (8.16)

Это уравнение изотермы Вант-Гоффа.

где DG°=DН° - ТDS° - термодинамический потенциал, определенный для единичных концентраций или для чистых веществ, то есть стандартный термодинамический потенциал - он определен для единичных концентраций начальных и конечных веществ и для общего давления 1 атм, но может быть разным для разных температур.

Вопросы для самоконтроля

1. Какие реакции называются: а) экзотермическими; б) эндотермическими?

2. Что называется тепловым эффектом реакции? В каких единицах он выражается?

3. Что называется энтальпией? Какой знак имеет изменение энтальпии для экзотермических реакций и эндотермических реакций?

4. Какие условия называются стандартными?

5. Как формулируется закон Гесса?

6. Что называется теплотой образования вещества? Сформулируйте первое следствие из закона Гесса.

7. Что называется теплотой сгорания вещества? Сформулируйте второе следствие из закона Гесса.

8. Сформулируйте третий закон термодинамики.

9. Что такое фаза химической системы?

10. Как называются функции состояния системы и от чего они зависят?

11. В результате каких процессов внутренняя энергия системы увеличивается? Какой знак будет иметь работа, если Q = 0 ?

12. Увеличится ли внутренняя энергия системы, если Q = 0 и W= 0?

13. К системе подведена теплота 200 кДж, система совершила работу против действия внешних сил, равную 150 кДж. На какую величину изменилась внутренняя энергия системы? Какой знак имеет Δ U?

14. Приведите два пути окисления серы до SO 3 . Составьте энтальпийную диаграмму процесса.

15. Газовые выбросы тепловых станций и двигателей внутреннего сгорания содержат оксиды азота. Реакции их образования очень сложны, но в наиболее простом виде их можно представить уравнениями:

a) ½ N 2 + ½ O 2 = NO.

6) NO + ½ O 2 = NO 2 .

Определите стандартные энтальпии этих реакций при 298 К и укажите, какая и: них - эндотермическая, какая - экзотермическая.

16. Термитная смесь состоит из порошка алюминия и Fe 2 O 3 . Запишите уравнение реакции между этими веществами и рассчитайте энтальпию этой реакции.

17. Приведите примеры самопроизвольных процессов, сопровождающихся по­нижением энтальпии системы (экзотермических процессов).

18. Приведите примеры самопроизвольных процессов, сопровождающихся пе­реходом системы из более упорядоченного в менее упорядоченное состояние.

19. Какой знак имеет энтропия процессов: а) сублимации иода; б) перехода бе­лого олова в серое?

20. Можно ли предсказать влияние температуры на направление химической реакции, если известна ее энтальпия? Ответ подтвердите на примере какой-либо реакции.

22. Возможно ли самопроизвольное окисление азота по уравнению:

½ N 2 + О 2 = NO 2

при стандартных состояниях N 2 , O 2 , и NO 2 , при 298 К и других температурах? Ответ подтвердите расчетом.

23. В чем разница между энергией Гиббса и стандартной энергией Гиббса хи­мической реакции?

>> Химия: Почему протекают химические реакции

Предсказание возможности осуществления той или иной реакции - одна из основных задач, которая стоит перед химиками.

На бумаге можно написать уравнение любой химической реакции («бумага все стерпит»), а возможна ли такая реакция практически?

В одних случаях (например, при обжиге известняка: СаСО3-> СаО + С02) достаточно повысить температуру, чтобы реакция началась, а в других (например, восстановление кальция из его оксида водородом: СаО + Н2 ->Са + Н20) реакцию невозможно осуществить ни при каких условиях!

Экспериментальная проверка возможности протекания той или иной реакции в разных условиях - дело трудоемкое и неэффективное. Но можно теоретически ответить на такой вопрос, основываясь на законах химической термодинамики (с которыми вы знакомились на уроках физики).

Один из наиболее важных законов природы (первый закон термодинамики) - это закон сохранения энергии: энергия не возникает из ничего и не исчезает бесследно, а только переходит из одной формы в другую.

В общем случае энергия объекта складывается из трех ее основных видов: кинетической, потенциальной, внутренней. Какой из этих видов наиболее важен при рассмотрении химических реакций? Конечно же внутренняя энергия (е)! Ведь она складывается из кинетической энергии движения атомов, молекул, ионов; из энергии их взаимного притяжения и отталкивания; из энергии, связанной с движением электронов в атоме, их притяжением к ядру, взаимным отталкиванием электронов и ядер, а также внутриядерной энергии.

Вам известно, что при химических реакциях одни химические связи разрушаются, а другие образуются; при этом изменяется электронное состояние атомов, их взаимоположение, а потому и внутренняя энергия продуктов реакции отличается от внутренней энергии реагентов.

Рассмотрим два возможных случая.

1. E реагентов > E продуктов. Исходя из закона сохранения энергии, в результате такой реакции энергия должна выделяться в окружающую среду: нагревается воздух, пробирка, автомобильный двигатель, продукты реакции.

Реакции, при которых выделяется энергия и нагревается окружающая среда, называют экзотермическими (рис. 23).

2. Е реагентов < Е продуктов. Исходя из закона сохранения энергии, следует предположить, что исходные вещества при таких процессах должны поглощать энергию из окружающей среды, температура реагирующей системы должна понижаться.

Реакции, при протекании которых энергия поглощается из окружающей среды, называют эндотермическими.

Энергия, которая выделяется или поглощается в химической реакции, называется, как вы знаете, тепловым эффектом этой реакции. Этот термин используют повсеместно, хотя точнее было бы говорить об энергетическом эффекте реакции.

Тепловой эффект реакции выражается в единицах энергии. Энергия отдельных атомов и молекул - величина незначительная. Поэтому тепловые эффекты реакций относят обычно к тем количествам веществ, которые определены уравнением, и выражают в Дж или кДж.

Уравнение химической реакции, в котором указан тепловой эффект, как вы уже знаете, называется термохимическим уравнением.

Например, термохимическое уравнение:

2Н2 + 02 = 2Н20 + 484 кДж

Знание тепловых эффектов химических реакций имеет большое практическое значение. Например, при проектировании химического реактора важно предусмотреть или приток энергии для поддержания реакции путем подогрева реактора, или, наоборот, отвод избытка теплоты, чтобы не было перегрева реактора со всеми вытекающими отсюда последствиями, вплоть до взрыва.

Если реакция проходит между несложными молекулами, то подсчитать тепловой эффект реакции достаточно просто.

Например:

Н 2 + Сl 2 -> 2НСl

Энергия затрачивается на разрыв двух химических связей Н-Н и Сl-Сl, энергия выделяется при образовании двух химических связей Н-Сl. Именно в химических связях сосредоточена важнейшая составляющая внутренней энергии соединения. Зная энергии этих связей, можно по разности узнать тепловой эффект реакции (Фр).

Eн-н = 436 кДж/моль, Есl-сl = 240 кДж/моль,

Eнсl = 430 кДж/моль,

Q p = 2 430 - 1 436 - 1 240 = 184 кДж.

Следовательно, данная реакция - экзотермическая.

А как, например, рассчитать тепловой эффект реакции разложения карбоната кальция? Ведь это соединение немолекулярного строения. Как точно определить, какие именно связи и сколько их разрушается, какова их энергия, какие связи и сколько их образуется в оксиде кальция?

Для расчета тепловых эффектов реакций используют значения величин теплот образования всех участвующих в реакции химических соединений (исходных и продуктов).

Теплота образования соединения (Qобр) - это тепловой эффект реакции образования одного моля соединения из простых веществ, устойчивых в стандартных условиях (25 °С, 1 атм.).

При этих условиях теплота образования простых веществ равна нулю по определению.

С + 02 = С02 + 394 кДж

0,5Т2 + 0,502 = N0 - 90 кДж,

где 394 кДж и -90 кДж - теплоты образования С02 и N0 соответственно.

Если данное химическое соединение можно непосредственно получить из простых веществ, причем реакция идет количественно (100% -ный выход продуктов), достаточно провести реакцию и измерить ее тепловой эффект с помощью специального прибора - калориметра. Так определяют теплоты образования многих оксидов, хлоридов, сульфидов и т. п. Однако подавляющее большинство химических соединений трудно или невозможно непосредственно получить из простых веществ.

Например, сжигая уголь в кислороде , нельзя определить Qобр угарного газа СО, так как всегда идет и процесс полного окисления. В этом случае на помощь приходит закон, сформулированный в прошлом веке петербургским академиком Г. И. Гессом.

Тепловой эффект химической реакции не зависит от промежуточных стадий (при условии, что исходные вещества и продукты реакции одинаковы).

Знание теплот образования соединений позволяет оценить их относительную устойчивость, а также рассчитать тепловые эффекты реакций.

Тепловой эффект химической реакции равен сумме теплот образования всех продуктов реакции минус сумма теплот образования всех реагентов (с учетом коэффициентов в уравнении реакции).

Организм человека - это уникальный «химический реактор», в котором идет множество разнообразных химических реакций. Их главное отличие от процессов, протекающих в пробирке, колбе, промышленной установке, состоит в том, что в организме все реакции протекают в «мягких» условиях (атмосферное давление, невысокая температура), при этом образуется мало вредных побочных продуктов.

Процесс окисления органических веществ кислородом - главный источник энергии, а его основные конечные продукты - С02 и Н20.

Эта выделившаяся энергия представляет собой большую величину, и если бы пища окислялась в организме быстро и полностью, то уже несколько съеденных кусочков сахара вызвали бы перегревание организма. Но биохимические процессы, суммарный тепловой эффект которых по закону Гесса не зависит от механизма и является постоянной величиной, идут ступенчато, как бы растянуты во времени. Поэтому организм не «сгорает», а экономно расходует эту энергию на процессы жизнедеятельности. Но всегда ли происходит так?

Каждый человек должен хотя бы приблизительно представлять, сколько энергии поступает в его организм с пищей и сколько расходуется в течение суток.

Одна из основ рационального питания такова: количество поступающей с пищей энергии не должно превышать расход энергии (или быть меньше) более чем на 5%, иначе нарушается обмен веществ, человек полнеет или худеет.

Энергетический эквивалент пищи - ее калорийность, выражаемая в килокалориях на 100 г продукта (часто указывают на упаковке, можно также найти в специальных справочниках и книгах по кулинарии). А расход энергии в организме зависит от возраста, пола, интенсивности труда. Например, женщине (секретарь, бухгалтер) требуется в сутки около 2100 ккал, а мужчине (лесоруб, бетонщик, шахтер) ежесуточно необходимы приблизительно 4300 ккал.

Наиболее полезно питание с невысокой калорийностью, но с наличием всех компонентов в пище (белков, жиров, углеводов, минеральных веществ, витаминов , микроэлементов).

Энергетическая ценность продуктов питания и теплотворная способность топлива связаны с экзотермическими реакциями их окисления. Движущей силой таких реакций является «стремление» системы к состоянию с наименьшей внутренней энергией.

Экзотермические реакции начинаются самопроизвольно, или требуется только небольшой «толчок» - первоначальная подача энергии.

А что же тогда является движущей силой эндотермических реакций, в ходе которых тепловая энергия поступает из окружающей среды и запасается в продуктах реакции, превращаясь в их внутреннюю энергию? Эта «сила» связана со стремлением любой системы к наиболее вероятному состоянию, которое характеризуется максимальным беспорядком, ее называют энтропией. Например, молекулы, входящие в состав воздуха, не падают на Землю, хотя минимуму потенциальной энергии каждой молекулы соответствует наиболее низкое ее положение, так как стремление к наиболее вероятному состоянию заставляет молекулы беспорядочно распределяться в пространстве.

Представьте, что вы в стакан насыпали разные орехи. Практически невозможно добиться при встряхивании их расслоения, упорядоченности, так как и в этом случае система будет стремиться к наиболее вероятному состоянию, при котором беспорядок в системе возрастает, поэтому орехи всегда будут перемешаны. Причем чем больше частиц мы имеем, тем вероятность беспорядка больше. Самый большой порядок в химических системах - в идеальном кристалле при температуре абсолютного нуля. Говорят, что энтропия в данном случае равна нулю. С повышением температуры в кристалле начинают усиливаться беспорядочные колебания атомов (молекул, ионов). Энтропия увеличивается. Особенно резко это происходит в момент плавления при переходе от твердого тела к жидкости и еще в большей степени - в момент испарения при переходе от жидкости к газу.

Энтропия газов значительно превышает энтропию жидких и тем более твердых тел. Если вы прольете немного бензина в закрытом помещении, например в гараже, то скоро почувствуете его запах во всем объеме помещения. Происходит испарение (эндотермический процесс) и диффузия, беспорядочное распределение паров бензина по всему объему. Пары бензина имеют большую энтропию по сравнению с жидкостью.

Процесс кипения воды с энергетической точки зрения тоже эндотермический процесс, но выгоден с точки зрения увеличения энтропии при переходе жидкости в пар. При температуре 100 °С энтропийный фактор «перетягивает» энергетический - вода начинает кипеть - пары воды имеют большую энтропию по сравнению с жидкой водой.

Таблица 11 Некоторые значения стандартной молярной энтропии

Анализируя данные, приведенные в таблице 11, обратите внимание, насколько мало значение энтропии для алмаза, имеющего очень правильную структуру. Вещества, образованные более

Стандартная молярная энтропия - это значение энтропии для 1 моль вещества при температуре 298 К и давлении 10 5 Па.

сложными частицами, обладают очень большими значениями энтропии. Например, энтропия этана больше энтропии метана. Эндотермические реакции - это как раз те реакции, в которых наблюдается достаточно сильный рост энтропии, например, за счет образования газообразных продуктов из жидких или твердых веществ или же за счет увеличения числа частиц. Например:

СаС03 -> СаО + С02 - Q

Сделаем выводы:

1. Направление химической реакции определяется двумя факторами: стремлением к уменьшению внутренней энергии с выделением энергии и стремлением к максимальному беспорядку, то есть к увеличению энтропии.

2. Эндотермическую реакцию можно заставить идти, если она сопровождается увеличением энтропии.

3. Энтропия увеличивается при повышении температуры и особенно сильно при фазовых переходах: твердое - жидкое, твердое - газообразное.

4. Чем выше температура, при которой проводят реакцию, тем большее значение будет иметь энтропийный фактор по сравнению с энергетическим.

Существуют экспериментальные и теоретические методы определения знтропий различных химических соединений. Используя эти методы, можно количественно рассчитать изменения энтропии при протекании конкретной реакции аналогично тому, как это делается для теплового эффекта реакции. В результате появляется возможность предсказать направление химической реакции (табл. 12).

Составлены специальные справочные данные, которые включают сравнительную характеристику этих величин с учетом температуры.

Вернемся к случаю № 2 (см. табл. 12).

Все живое на нашей планете - от вирусов и бактерий до человека - состоит из высокоорганизованной материи, которая более упорядочена по сравнению с окружающим миром. Например, белок. Вспомните его структуры: первичная, вторичная, третичная. Вы уже хорошо знакомы и с «веществом наследственности» - ДНК, молекулы которого состоят из расположенных в строго определенной последовательности структурных единиц. Значит, синтез белка или ДНК сопровождается огромным уменьшением энтропии.

Tаблица 12 Возможность протекания химических реакций в зависимости от изменения энергии и энтропии


Кроме того, исходный строительный материал для роста растений и животных образуется в самих растениях из воды Н20 и углекислого газа С02 в процессе фотосинтеза:

6Н20 + 6С02(г) -> С6Н1206 + 602(г)

В этой реакции энтропия уменьшается, идет реакция с поглощением световой энергии. Значит, процесс эндотермический! Таким образом, реакции, которым мы обязаны жизнью, оказываются термодинамически запрещенными. Но они идут! А используется при этом энергия световых квантов в видимой области спектра, которая намного больше тепловой энергии (инфракрасных квантов). В природе эндотермические реакции с уменьшением энтропии, как вы видите, протекают в определенных условиях. Химики пока не могут создать такие условия искусственно.

1. При сгорании 7 г этилена выделяется 350 кДж теплоты. Определите тепловой эффект реакции.

2. Термохимическое уравнение реакции полного сгорания ацетилена:

2С2Н2 + 502 = 4С02 + 2Н20 + 2610 кДж Сколько теплоты выделяется при использовании 1,12 л ацетилена?

3. При соединении 18 г алюминия с кислородом выделяется 547 кДж теплоты. Составьте термохимическое уравнение этой реакции.

4. На основании того, что при сжигании 6,5 г цинка выделяется теплота, равная 34,8 кДж, определите теплоту образования оксида цинка.

5*. Определите тепловой эффект реакции:

2С2Н6(г) + 702(г) -> 4С02(г) + 6Н20(г), если

Qобр (Н20)(г) = 241,8 кДж/моль;

Qобр (С02)(г) = 393,5 кДж/моль;

Qобр (С2Н6)(г) = 89,7 кДж/моль.

6*. Определите теплоту образования этилена, если

С(тв) + 02(г) = С02(г) +393,5 кДж,

Н2(г) + 0,502(г) = Н20 + 241,8 кДж,

С2Н4(г) + 302(г) = 2С02(г) + 2Н20(г) + 1323 кДж.

7*. Вычислите тепловые эффекты реакций, протекающих в организме:

а) С6Н1206(т) -> 2С2Н5ОН(ж) + 2С02(г);

б) С6Н1206(т) + 602(г) -> 6С02(г) + 6Н20 (ж), если Qобр (Н20)(ж) = 285,8 кДж/моль;

Q обр (C02)(г) (см- задачи 5 и 6);Q обр (С2Н50Н)(ж) = 277,6 кДж/моль; Q обр (С6Н1206)(т) = 1273 кДж/моль.

8*. Исходя из следующих данных:

FеО(т) + СО(г) -> Fе(т) + С02(г) + 18,2 кДж, 2СО(г) + 02(г) -> 2С02(г) + 566 кДж, Q обр(Н2O)(г) = 241,8 кДж/моль, вычислите тепловой эффект реакции:

FеО(т) + Н2(г) -> Fе(т) + Н20(г).

презентация урока



gastroguru © 2017