Простой способ получения высококачественного графена: две секунды в микроволновой печи. Способ получения графена

Графен всё более притягателен для исследователей. Если в 2007 году вышло 797 статей, посвященных графену, то за первые 8 месяцев 2008 года - уже 801 публикация. Каковы же наиболее значимые исследования и открытия последнего времени в области графеновых структур и технологий?

На сегодняшний день графен (рис. 1) - самый тонкий материал, известный человечеству, толщиной всего в один атом углерода. Он вошел в учебники по физике и в нашу реальность в 2004 году, когда исследователи из Манчестерского университета Андре Гейм и Константин Новоселов сумели его получить, используя обычную ленту-скотч для последовательного отделения слоев от обычного кристаллического графита, знакомого нам в виде карандашного стержня (см. Приложение). Замечателен тот факт, что графеновый лист, помещенный на подложку из оксидированного кремния, можно рассмотреть в хороший оптический микроскоп. И это при его толщине всего в несколько ангстрем (1Å = 10 –10 м)!

Популярность графена среди исследователей и инженеров растет день ото дня, поскольку он обладает необычными оптическими , электрическими, механическими и термическими свойствами. Многие эксперты предсказывают в недалеком будущем возможную замену кремниевых транзисторов более экономичными и быстродействующими графеновыми (рис. 2).

Несмотря на то что механическое отслоение с помощью скотча позволяет получать графеновые слои высокого качества для фундаментальных исследований, а эпитаксиальный способ выращивания графена может обеспечить наикратчайший путь к электронным микросхемам, химики пытаются получить графен из раствора. В добавление к низкой стоимости и высокой производительности, этот метод открывает дорогу ко многим широко используемым химическим техникам, которые позволили бы внедрять графеновые слои в различные наноструктуры либо интегрировать их с различными материалами для создания нанокомпозитов. Однако при получении графена химическими методами есть некоторые трудности, которые должны быть преодолены: во-первых, необходимо достигнуть полного расслоения графита, помещенного в раствор; во-вторых, сделать так, чтобы отслоенный графен в растворе сохранял форму листа, а не сворачивался и не слипался.

На днях в престижном журнале Nature были опубликованы две статьи независимо работающих научных групп, в которых авторам удалось преодолеть вышеназванные трудности и получить графеновые листы хорошего качества, подвешенные в растворе.

Первая группа ученных - из Стэнфордского университета (Калифорния, США) и (Китай) - внедряла серную и азотную кислоты между слоями графита (процесс интеркаляции; см. Graphite intercalation compound), и затем быстро нагревала образец до 1000°C (рис. 3a). Взрывное испарение молекул-интеркалянтов производит тонкие (толщиной в несколько нанометров) графитовые «хлопья», которые содержат множество графеновых слоев. После этого в пространство между графеновыми слоями химически внедряли два вещества - олеум и гидроокись тетрабутиламмония (ГТБА) (рис. 3b). Обработанный ультразвуком раствор содержал как графит, так и графеновые листы (рис. 3c). После этого методом центрифугирования проводили отделение графена (рис. 3d).

В тоже время вторая группа ученых - из Дублина , Оксфорда и Кембриджа - предложила другую методику для получения графена из многослойного графита - без использования интеркалянтов. Главное, по словам авторов статьи, использовать «правильные» органические растворители, такие как N-метил-пирролидон . Для получения высококачественного графена важно подобрать такие растворители, чтобы энергия поверхностного взаимодействия между растворителем и графеном была такой же, как для системы графен–графен. На рис. 4 показаны результаты пошагового получения графена.

Успех обоих экспериментов основан на нахождении правильных интеркалянтов и/или растворителей. Конечно, существуют и другие методики для получения графена, такие как преобразование графита в оксид графита. В них используется подход, называемый «оксидирование–расслоение–восстановление», в ходе которого базисные плоскости графита покрываются ковалентно-связанными функциональными группами кислорода. Этот окисленный графит становится гидрофильным (или попросту влаголюбивым) и может легко расслаиваться на отдельные графеновые листы под действие ультразвука, находясь в водяном растворе. Полученный графен обладает замечательными механическими и оптическими характеристиками, но его электрическая проводимость на несколько порядков ниже, чем проводимость графена, полученного при помощи «скотч-метода» (см. Приложение). Соответственно, такой графен вряд ли сможет найти применение в электронике.

Как оказалось, графен, который был получен в результате двух вышеобозначенных методик, более высокого качества (содержит меньшее количество дефектов в решетке) и, как результат, обладает более высокой проводимостью.

Очень кстати пришлось еще одно достижение исследователей из Калифорнии , которые недавно сообщили о высокоразрешающей (разрешение до 1Å) электронной микроскопии с низкой энергией электронов (80 кВ) для прямого наблюдения за отдельными атомами и дефектами в кристаллической решетке графена. Ученым впервые в мире удалось получить изображения атомной структуры графена высокой четкости (рис. 5), на которых можно своими глазами увидеть сеточную структуру графена.

Еще дальше ушли исследователи из Корнелловского университета . Из листа графена им удалось создать мембрану толщиной всего в один атом углерода, и надуть ее, как воздушный шарик. Такая мембрана оказалась достаточно прочной для того, чтобы выдерживать давление газа в несколько атмосфер. Эксперимент состоял в следующем. На подложку из оксидированного кремния с предварительно вытравленными ячейками были помещены листы графена, которые вследствие ван-дер-ваальсовых сил плотно прикрепились к поверхности кремния (рис. 6a). Таким образом были образованы микрокамеры, в которых можно было удерживать газ. После этого ученые создавали разность давлений внутри и снаружи камеры (рис. 6b). Используя атомно-силовой микроскоп , измеряющий величину отклоняющей силы, которую кантилевер с иглой чувствует при сканировании мембраны на высоте всего нескольких нанометров от ее поверхности, исследователям удалось наблюдать степень вогнутости-выгнутости мембраны (рис. 6c–e) при изменении давления до нескольких атмосфер.

После этого мембрана была использована в роли миниатюрного барабана для измерения частоты ее вибраций при изменении давления. Было установлено, что гелий остается в микрокамере даже при высоком давлении. Однако поскольку графен, использованный в эксперименте, был не идеален (имел дефекты кристаллической структуры), то газ понемногу просачивался через мембрану. В течение всего эксперимента, который продолжался более 70 часов, наблюдалось неуклонное уменьшение натяжения мембраны (рис. 6e).

Авторы исследования указывают, что подобные мембраны могут иметь самые разнообразные применения - например, использоваться для изучения биологических материалов, помещенных в раствор. Для этого будет достаточно накрыть такой материал графеном и изучать его сквозь прозрачную мембрану микроскопом, не опасаясь за утечку или испарение раствора, поддерживающего жизнедеятельность организма. Также можно сделать проколы атомного размера в мембране и затем наблюдать, изучая диффузионные процессы, как отдельные атомы или ионы проходят сквозь отверстие. Но самое главное - исследование ученых из Корнелловского университета еще на шаг приблизило науку к созданию одноатомных сенсоров.

Стремительный рост количества исследований на графене показывает, что это действительно очень перспективный материал для широкого круга применений, но до воплощения их в жизнь еще следует построить немало теорий и провести не один десяток экспериментов.

Impermeable Atomic Membranes from Graphene Sheets (доступен полный текст) // NanoLetters . V. 8. No. 8. P. 2458–2462 (2008).

Александр Самардак

Волокна графена под сканирующим электронным микроскопом. Чистый графен восстановлен из оксида графена (GO) в микроволновой печи. Масштаб 40 мкм (слева) и 10 мкм (справа). Фото: Jieun Yang, Damien Voiry, Jacob Kupferberg / Rutgers University

Графен - 2D-модификация углерода, образованная слоем толщиной в один атом углерода. Материал обладает высокой прочностью, высокой теплопроводностью и уникальными физико-химическими свойствами. Он демонстрирует максимальную подвижность электронов среди всех известных материалов на Земле. Это делает графен практически идеальным материалом в самых различных приложениях, в том числе в электронике, катализаторах, элементах питания, композитных материалах и т.д. Дело за малым - научиться получать качественные слои графена в промышленных масштабах.

Химики из Ратгерского университета (США) нашли простой и быстрый метод производства высококачественного графена путём обработки оксида графена в обычной микроволновой печи . Метод на удивление примитивный и эффективный.

Оксид графита - соединение углерода, водорода и кислорода в различных соотношениях, которое образуется при обработке графита сильными окислителями. Чтобы избавиться от оставшегося кислорода в оксиде графита, а затем получить чистый графен в двумерных листах, нужно приложить значительные усилия.

Оксид графита смешивают с сильными щелочами и ещё дальше восстанавливают материал. В результате получаются мономолекулярные листы с остатками кислорода. Эти листы принято называть оксидом графена (GO). Химики испробовали разные способы удаления лишнего кислорода из GO ( , , , ), но восстановленный такими способами GO (rGO) остаётся сильно неупорядоченным материалом, который далёк по своим свойствам от настоящего чистого графена, полученного методом химического осаждения из газовой фазы (ХОГФ или CVD).

Даже в неупорядоченной форме rGO потенциально может быть полезен для энергоносителей ( , , , , ) и катализаторов ( , , , ), но для извлечения максимальной выгоды от уникальных свойств графена в электронике нужно научиться получать чистый качественный графен из GO.

Химики из Ратгерского университета предлагают простой и быстрый способ восстановления GO до чистого графена, используя 1-2-секундные импульсы микроволнового излучения. Как видно на графиках, графен, полученный «микроволновым восстановлением» (MW-rGO) по своим свойствам намного ближе к чистейшему графену, полученному с помощью ХОГФ.


Физические характеристики MW-rGO, по сравнению с нетронутым оксидом графена GO, восстановленным оксидом графена rGO и графеном, полученным методом химического осаждения из газовой фазы (CVD). Показаны типичные хлопья GO, осаждённые на кремниевую подложку (А); рентгеновская фотоэлектронная спектроскопия (B); рамановская спектроскопия и соотношение размера кристаллов (L a) к отношению пиков l 2D /l G в рамановском спектре для MW-rGO, GO и ХОГФ (CVD).


Электронные и электрокаталитические свойства MW-rGO, по сравнению с rGO. Иллюстрации: Rutgers University

Техпроцесс получения MW-rGO состоит из нескольких этапов.

  1. Окисление графита модифицированным методом Хаммерса и растворение его до однослойных хлопьев оксида графена в воде.
  2. Отжиг GO, чтобы материал стал более восприимчив к микроволновому облучению.
  3. Облучение хлопьев GO в обычной микроволновой печи мощностью 1000 Вт на 1-2 секунды. Во время этой процедуры GO быстро нагревается до высокой температуры, происходит десорбция кислородных групп и великолепная структуризация углеродной решётки.
Съёмка просвечивающим электронным микроскопом показывает, что после обработки СВЧ-излучателем образуется высокоупорядоченная структура, в которой кислородные функциональные группы практически полностью уничтожены.


На изображениях с просвечивающего электронного микроскопа показана структура листов графена со шкалой 1 нм. Слева - однослойный rGO, на котором много дефектов, в том числе функциональные группы кислорода (синяя стрелка) и дыры в углеродном слое (красная стрелка). По центру и справа - отлично структурированный двуслойный и трёхслойный MW-rGO. Фото: Rutgers University

Великолепные структурные свойства MW-rGO при использовании в полевых транзисторах позволяют увеличить максимальную подвижность электронов примерно до 1500 см 2 /В·с, что сравнимо с выдающимися характеристиками современных транзисторов с высокой подвижностью электронов.

Кроме электроники, MW-rGO пригодится в производстве катализаторов: он показал исключительно маленькое значение коэффициента Тафеля при использовании в качестве катализатора при реакции выделения кислорода: примерно 38 мВ на декаду. Катализатор на MW-rGO также сохранил стабильность в реакции выделения водорода, которая продолжалась более 100 часов.

Всё это предполагает отличный потенциал для использования восстановленного в микроволновом излучении графена в промышленности.

Научная статья "High-quality graphene via microwave reduction of solution-exfoliated graphene oxide" опубликована 1 сентября 2016 года в журнале Science (doi: 10.1126/science.aah3398).

Открытие однослойного графена привлекло внимание к этому объекту десятков лабораторий во всем мире. Это связано как с необычными физико-химическими свойствами графена, так и значительным потенциалом предполагаемого прикладного использования. Реализация этого потенциала возможна только в результате разработки относительно простых и достаточно эффективных методов получения и идентификации графенов. По этой причине на данной стадии развития исследований в области графенов усилия специалистов направлены на разработку таких методов. Основные трудности приготовления графена связаны с невозможностью получения высококачественных образцов в ощутимых количествах, регулированием числа слоев и качества кристаллической решетки образца. Метод Новоселова не дает ни высокого качества, ни высокого выхода продукта; нужно преодолеть энергию ван-дер-ваальсовых взаимодействий между слоями без нарушения структуры первого, второго и последующих слоев, что затруднительно. Альтернативы: химическое отшелушивание слоев и их стабилизация, наращивание слоев на подложках из органических прекурсоров и попытки каталитического выращивания графена прямо на субстрате (рис. 3).

Рис. 3.

Высокий интерес к применению графена заставляет исследователей искать новые методы его получения. Изготовление графена микромеханическим методом оказалось довольно трудоемким, поэтому большую популярность в последнее время приобретает альтернативный способ получения графена - эпитаксиальное выращивание, при котором слои графена образуются на поверхности кристалла SiC, нагреваемого до высокой температуры в вакууме.

Также рассматриваются способы жидкофазного разделения слоев графита с помощью поверхостно-активных веществ (ПАВ), сильных газообразных окислителей типа кислорода и галогенов, расщепление графита ультразвуком. графен лист графит

Потенциальные области применения графена включают:

Замену углеродных волокон в композитных материалах, с целью создания более легковесных самолетов и спутников;

Замена кремния в транзисторах;

Внедрение в пластмассу, с целью придания ей электропроводности;

Датчики на основе графена могут обнаруживать опасные молекулы;

Использование графеновой пудры в электрических аккумуляторах, с целью увеличения их эффективности;

Оптоэлектроника;

Более крепкий, прочный и легкий пластик;

Герметичные пластиковые контейнеры, которые позволят неделями хранить в нем еду, и она будет оставаться свежей;

Прозрачное токопроводящее покрытие для солнечных панелей и для мониторов;

Более крепкие ветряные двигатели;

Более устойчивые к механическому воздействию медицинские имплантаты;

Лучшее спортивное снаряжение;

Суперконденсаторы;

Высокомощные высокочастотные электронные устройства;

Искуственные мембраны для разделения двух жидкостей в резервуаре;

Улучшение тачскринов, жидкокристаллических дисплеев.

Исследователи из Австралии создали бумагу из множества слоёв графена. Она показала удивительные механические свойства, сохраняя хорошую гибкость и высокую упругость. Специалисты из технологического университета Сиднея использовали комбинацию химической и тепловой обработки, чтобы аккуратно отделить от графита одноатомные слои, очистить их и выложить как монолит в идеально выровненную структуру из гексагональных решёток атомов углерода - графеновую бумагу. Ее плотность - в пять-шесть раз ниже, чем у стали, а твердость и прочность в несколько раз выше

Во время кристаллизации зародыши графена оказываются неустойчивыми из-за слишком большого отношения периметра к поверхности. Происходит схлопывание к другим аллотропным модификациям углерода (графит, алмаз, фуллерены, нанотрубки).

Эксперименты показали, что графен может резко снизить коэффициент трения и износ металлических деталей без использования масел, загрязняющих окружающую среду. Покрытие из графена безвредно, защищает металл от коррозии и самоориентируется в начале движения детали, обеспечивая минимальное трение. Более того, утилизация и повторное использование графена не требует сложных технологий - достаточно ополоснуть деталь растворителем и извлечь графен.

В 2004 году группа ученых из Манчестера (А. Гейм, К. Новоселов) изобрела метод механического расщепления графита Поверхность графита плотно притирается к поверхности другого вещества, оставляя множество чешуек разной толщины При помощи оптического и атомного силового микроскопов среди чешуек ищут те, которые имеют одноатомную толщину Для таких поисков хорошо подходит подложка из окисленного кремния

При нагревании SiC до 1300°C в сверхвысоком вакууме происходит сублимация кремния, в результате чего на поверхности кристалла образуются слои графена.


Владельцы патента RU 2572325:

Изобретение может быть использовано для получения материалов и элементов наноэлектроники, нанофотоники, газовых сенсоров и лазерных систем с ультракороткими импульсами излучения. Графен получают путем расслоения графита в жидком азоте. Поверхность графитовой мишени обрабатывают пучком импульсного лазерного излучения с длительностью импульса порядка 10 -13 с, перемещающимся по поверхности мишени со скоростью, обеспечивающей 75% перекрытие пятен воздействия лазерных импульсов. Способ позволяет получать графеновые структуры различных форм и размеров с обеспечением высокой производительности и экологической чистоты производственного процесса. 2 ил.

Изобретение относится к области производства углеродных наноструктур и может быть использовано для получения графена для применения в качестве основы для материалов и элементов наноэлектроники, нанофотоники, газовых сенсоров и лазерных систем с ультракороткими импульсами излучения.

Все известные в настоящее время методы получения графена можно разделить на две группы: синтеза и отделения. К первой группе можно отнести такие методы, как синтез графена методом химического осаждения паров, получение графена в электрической дуге, термическое разложение карбида кремния, эпитаксиальное выращивание на металлической поверхности и т.п. Они позволяют формировать графен высокого качества, но являются достаточно длительными и дорогостоящими, так как предполагают использование сложного специфического оборудования и выполнение строгих технологических условий. В то же время для получения графена в свободном виде требуются специальные процедуры отделения и очистки. Вторая группа объединяет такие методы как микромеханическое расслоение графита, жидкофазное расслоение графита, окисление графита и т.п. Они более просты в реализации, но имеют существенные недостатки. Это, прежде всего, малая доля выхода графена требуемого качества и необходимость его очистки от сопутствующего материала и используемых технологических сред (Елецкий А.В., Искандарова И.М., Книжник А.А. и др. Графен: методы получения и теплофизические свойства. Успехи физических наук, 2011, т. 181, №3, с. 233-250).

Известен способ формирования графена путем расслоения графита (см. патент US 20130102084 А1, МПК C01B 31/04, H01L 51/00, H01L 51/42, опубл.: 25.04.2013), объединяющий ряд вариантов, предполагающих внедрение в пространство между атомными слоями графитового образца растворов солей металлов (Li, Al, Fe, Cu) в органических растворителях (пропиленкарбонат, Ν,Ν-диметилформамид, диметилсульфоксид). Ионы и органические молекулы растворителя расширяют пространство между атомными слоями, что обеспечивает возможность их разделения при воздействии внешней вынуждающей силы, которая может иметь электрохимическую, термическую, микроволновую, сольвотермальную, акустохимическую или акустическую природу.

Недостатком способа является низкая производительность вследствие большой длительности этапов его реализации (расширение графита, обработка внешней вынуждающей силой, очистка полученного графена). Кроме того, полная очистка графена от органических растворителей не достижима.

Известен также способ производства графена с использованием электромагнитного излучения (см. патент US 20130056346 A1, МПК C01B 31/02, B01J 19/12, B82Y 40/00, опубл.: 07.03.2013). Данный способ предполагает преобразование оксида графита в графен при его нагреве под действием концентрированного электромагнитного излучения (в том числе лазерного).

Недостаток этого способа заключается в том, что исходным материалом для получения графена является специально подготовленный микродисперсный порошок оксида графита, получение которого связано со сложными химико-механическими процессами и использованием экологически опасных реагентов.

Известен способ производства углеродных наноструктур в криогенных жидкостях (см. Mortazavi S.Ζ., P. Parvin, Reyhani A. Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen. Laser Physics Review Letters, 2012, Vol. 9, №7, P. 547-552 (прототип)), при котором графен получают путем лазерной абляции графитовой мишени, помещенной в жидкий азот, используя импульсный наносекундный Nd:YAG лазер с модулированной добротностью.

К недостаткам этого способа можно отнести то, что для получения графена требуется длительное время (20 минут) и обработка поверхности мишени производится неподвижным лазерным пучком, что ограничивает площадь синтеза границами пятна фокусировки излучения. Совокупность данных недостатков уменьшает производительность рассматриваемого способа.

Техническим результатом предлагаемого изобретения является увеличение производительности процесса получения графена за один цикл обработки без использования химических веществ, требующих дополнительной очистки полученного материала.

Технический результат достигается тем, что в способе получения графена процесс производится в жидком азоте с использованием импульсного лазерного излучения, причем обработку поверхности графита производят пучком лазерного излучения с длительностью импульса порядка 10 -13 с, перемещающимся по поверхности мишени со скоростью, обеспечивающей 75% перекрытие пятен воздействия лазерных импульсов.

На фиг. 1 приведено изображение графеновых структур, полученных с применением изобретения при лазерном расслоении высокоориентированного пиролитического графита (ВОПГ). На фиг. 2 приведено изображение графеновых структур, полученных с применением изобретения при лазерном расслоении стеклоуглерода. Изображения получены при помощи растрового электронного микроскопа Quanta 200 3D.

Способ реализован с применением иттербиевого фемтосекундного лазера ТЕТА-10. Данный лазер обеспечивает обработку материалов излучением с длиной волны 1029 нм, длительностью импульса 300 фс и энергией в импульсе 150 мкДж. Частота повторения лазерных импульсов 10 кГц. Обработка поверхности графита производится в среде жидкого азота, который покрывает ее слоем толщиной около 1 см. Диаметр пятна лазерного излучения на поверхности графита 100 мкм.

При апробации способа в качестве исходного материала (материала мишеней) для получения графена использовались следующие модификации графита: высокоориентированный пиролитический графит ВОПГ-1,7-10×10×1-1 и стеклоуглерод СУ-2000.

Обработка поверхности исходного материала производится в режиме сканирования. Скорость движения лазерного пучка по поверхности мишени 0,25 м/с. При такой скорости сканирования обеспечивается 75% перекрытие пятен воздействия лазерных импульсов, что соответствует обработке каждого элемента поверхности в пределах лазерного трека четырьмя импульсами излучения (за исключением начальной и конечной стадий лазерного трека). При меньшей степени воздействия не происходит эксфолиации графена, а при большей начинается сильное разрушение поверхности мишени и, одновременно, отслоенного углеродного материала. Количество получаемого графенового материала растет пропорционально площади поверхности графитовой мишени, подвергнутой лазерной обработке. Увеличение площади обработки обеспечивается многопроходным облучением поверхности графита с расстоянием между центральными линиями лазерных треков 100 мкм, что позволяет избежать их перекрытия и разрушения отслоенных графеновых структур.

В результате реализации способа с поверхности графитовой мишени отслаивается графен с толщиной около 10 нм. В случае использования в качестве исходного материала ВОПГ графен получается в форме лент шириной до 50 мкм и длиной более 150 мкм и пластин произвольной формы с характерным размером до 150 мкм. В случае использования в качестве исходного материала стеклоуглерода графен получается в форме комков с сильно развитой свободной поверхностью и характерным размером около 1 мкм.

После завершения процесса получения графеновый материал выдерживается в естественных условиях до полного испарения жидкого азота, после чего он становится доступным для последующего исследования и использования.

Таким образом, предложенный способ позволит получать графеновые структуры различных форм и размеров с обеспечением высокой производительности и экологической чистоты производственного процесса.

Способ получения графена в жидком азоте с использованием импульсного лазерного излучения, отличающийся тем, что обработку поверхности графита производят пучком лазерного излучения с длительностью импульса порядка 10 -13 с, перемещающимся по поверхности мишени со скоростью, обеспечивающей 75% перекрытие пятен воздействия лазерных импульсов.

Похожие патенты:

Изобретение может быть использовано при изготовлении электронных и оптоэлектронных устройств, а также солнечных батарей. Исходный графит диспергируют иглофрезерованием с получением продукта диспергирования, содержащего графен и графитовые элементы.

Изобретение относится к области создания и производства углеродных материалов с высокими физико-механическими характеристиками, в частности углерод-углеродных композиционных материалов на основе тканых армирующих наполнителей из углеродного высокомодульного волокна и углеродной матрицы, сформированной из пеков в процессе карбонизации и последующих высокотемпературных обработок.

Изобретение может быть использовано при изготовлении конструкционных материалов. Способ пакетировки углеродных обожженных крупногабаритных заготовок мелкозернистого графита изостатического прессования при графитации включает их расположение вертикально и горизонтально поперек керна в столбиках, отделенных друг от друга слоями керновой пересыпки толщиной приблизительно 0,2 диаметра заготовки.

Изобретение может быть использовано для изготовления терморасширенного графита (ТРГ) и огнезащитных материалов. Исходный порошкообразный графит обрабатывают окислительным раствором, содержащим следующие компоненты в соотношении, г/г графита: серная кислота 2,0-5,0; азотнокислый аммоний 0,04-0,15; карбамид 0,04-0,15.

Изобретение может быть использовано в медицине, биологии и сельском хозяйстве в качестве химических контейнеров для хранения и транспортировки веществ. Графит фторируют фторокислителями - трифторидом хлора или брома в растворителе, инертном к указанным фторокислителям, в качестве которого используют тетрахлорид углерода или фреон.

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония. Разработанные материалы могут быть использованы для получения износостойких изделий, режущего инструмента, керамических подшипников, медицинских нерезорбируемых имплантатов.

Изобретение относится к области органической химии и высокомолекулярных композитных материалов на основе органических соединений, обладающих высокой температурой разложения, и может быть использовано в качестве покрытий, устойчивых к температурным воздействиям.

Изобретение относится к аэрогелям, кальцинированным изделиям и изделиям с кристаллической структурой, содержащим ZrO2, и может найти применение в стоматологии. Способ получения аэрогеля включает стадии, на которых обеспечивают первый золь диоксида циркония, содержащий частицы кристаллического оксида металла, характеризующиеся средним размером первичных частиц не более чем 50 нанометров, добавляют радикально реакционно-способный модификатор поверхности к золю диоксида циркония с получением радикально полимеризуемого поверхностно-модифицированного золя диоксида циркония, добавляют инициатор радикальной полимеризации, нагревают с образованием геля, экстрагируют спирт, если присутствует, из геля посредством сверхкритической экстракции с получением аэрогеля.

Изобретение относится к области нанотехнологий и наноматериалов. Наноразмерный порошок кремния получают травлением монокристаллического кремния в ячейке электрохимического травления с контрэлектродом U-образной формы из нержавеющей стали с последующим механическим отделением пористого слоя от подложки, его измельчением в изопропиловом спирте в ультразвуковой ванне и сушкой в естественных условиях, при этом в качестве электролита используют раствор диметилформамида с добавлением плавиковой кислоты и 20% по объему перекиси водорода (30%).

Изобретение может быть использовано для получения материалов и элементов наноэлектроники, нанофотоники, газовых сенсоров и лазерных систем с ультракороткими импульсами излучения. Графен получают путем расслоения графита в жидком азоте. Поверхность графитовой мишени обрабатывают пучком импульсного лазерного излучения с длительностью импульса порядка 10-13 с, перемещающимся по поверхности мишени со скоростью, обеспечивающей 75 перекрытие пятен воздействия лазерных импульсов. Способ позволяет получать графеновые структуры различных форм и размеров с обеспечением высокой производительности и экологической чистоты производственного процесса. 2 ил.

Название(я): Получение вспененного графита и графена

Номер в каталоге: 7

Основной предмет (школа): химия

Область знания (ВУЗ): соединения внедрения в графит, наноэлектроника

Актуальность: За открытие графена в 2010 г. была присуждена нобелевская премия. Задолго до этого был достаточно подробно исследован уникальный класс соединений - различные соединения внедрения в графит, которые, в частности, используются для получения вспененного графита и активных огнезащитных материалов. Реализация проектной работы по получению и исследованию свойств подобных материалов может существенно расширить кругозор школьника, однако с точки зрения техники безопасности обязательно должна выполняться в тесном взаимодействии с тьюторами.

Новизна: синтез и изучение поведения интеркаляционных соединений на основе графита

Цель: получение интеркаляционных соединений с необычными химическими и электрофизическими свойствами

1. изучение литературы по строению и свойствам графита, соединениям внедрения в графит (СВГ), синтезу и свойствам оксида графена и графена, их практическому использованию

2. выбор методик получения СВГ с азотной кислотой, получение вспененного графита при термической обработке СВГ

3. выбор методик получения оксида графена

4. очистка суспензии оксида графена

5. получение графена путем химического восстановления оксида графена или при его термической обработке

6. осаждение листов графена на прозрачный полимерный материал для получения гибкого прозрачного проводника

7. изучение электро- и теплопроводности графита и вспененного графита

Экспериментальные подходы: получение соединений внедрения в графит при взаимодействии с концентрированными кислотами, химическое деламинирование графита

Методические подходы: ознакомление с химией нестехиометрических соединений, интеркаляционных соединений, анизотропией кристаллической решетки, теории химической связи в углеродных наноматериалах

Требующиеся нестандартные реактивы и ресурсы: концентрированные кислоты, чистый графит, боргидрид натрия, термическое оборудование

Освоение школьником теоретического материала: структура и свойства углеродных наноматериалов и перспектив их практического использования, химическая связь в полиароматических соединениях, теория гибридизации, ковалентные, металлические, ван-дер-ваальсовы силы

Навыки, получаемые школьником: работа с концентрированными кислотами (после детального инструктажа, в средствах защиты кожи и глаз, под присмотром учителя или тьютора), работа с термическим оборудованием,

Предшествующий материал по школьной программе: химия углерода, ароматические соединения, аллотропия углерода

Роль учителя: общее руководство проектом, непосредственное участие во всех экспериментах, подробный инструктаж и контроль соблюдения техники безопасности

Возможная помощь тьюторов: обеспечение реактивами, дополнительной литературой, консультативная помощь

Техника безопасности: требуется работа с едкими веществами и концентрированными кислотами, все делать только под тягой, в халатах, перчатках и очках, только в присутствии учителя или тьютора

Примечания: в случае получения графена их можно дополнительно исследовать с помощью атомно - силовой микроскопии и спектроскопии комбинационного рассеяния (в сотрудничестве с ВУЗом).

Идеализированная структура оксида графена

Другие работы кластера "Каталог тем проектных работ" (гипертекстовый навигатор):



gastroguru © 2017