Растения под напряжением или сколько вольт нужно для картошки? Электричество из внешнего источника Электрическая стимуляция семян декоративных растений.

Автореферат диссертации по теме "Стимуляция корнеобразования черенков винограда электрическим током"

На правах рукописи

КУДРЖОВ АЛЕКСАНДР ГЕОРГИЕВИЧ

СТИМУЛЯЦИЯ КОРНЕОБРАЗОВАНИЯ ЧЕРЕНКОВ ВИНОГРАДА ЭЛЕКТРИЧЕСКИМ ТОКОМ

Специальность 05.20.02- электрификация сельскохозяйственного производства

Краснодар -1999

Работа выполнена в Кубанском государственном аграрном университете.

Научные руководители: кандидат технических наук, профессор ПЕРЕКОТИЙ Г.П. кандвдат сельскохозяйственных наук, доцент РАДЧЕВСКИЙ П.П.

Официальные оппоненты: доктор технических наук, профессор Гайтов Б.Х. кандидат технических наук, доцент Эвентов С.З.

Ведущее предприятие:

Крымская селекционно-опытная станция.

Защита диссертации состоится " /■? " 999 г. в " час. на

заседании диссертационного совета К 120,23.07 Кубанского государственно-го.аграрного университета по адресу 350044, г. Краснодар, ул. Калинина, 13, факультет электрификации, зал заседаний совета.

С диссертацией можно ознакомиться в библиотеке КГАУ.

Учёный секретарь диссертационного совета, кандидат технических наук, доцент * ¿/И.г. Стрижков

рм -Ш ЗЛ о ясУ-С.^ 0

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Перспективы дальнейшего развития виноградарства нашей страны требуют резкого увеличен:« производства посадочного материала, как основного фактора, задерживающего освоение новых площадей под виноградники. Несмотря на применение рада биологических и агротехнических мероприятий по увеличению выхода первосортных корнесобст-венных саженцев, до настоящего времени их выход в некоторых хозяйствах крайне низок, что сдерживает расширение площадей виноградников.

Современное состояние науки даёт возможность управлять этими факторами посредством разного рода стимуляторов, в го.м числе и электрических, с помощью которых оказывается возможным активно вмешиваться в жизненный процесс растения и ориентировать его в нужном направлении.

Исследованиями советских и зарубежных учёных, среди которых следует отметить работы В.И. Мичурина, A.M. Басова, И.И. Гунара, Б.Р. Лазарен-ко, И:Ф. Бородина, установлено, что электрофизические методы и способы воздействия на биологические объекты, в том числе и на растительные организмы, в ряде случаев дают не только количественные, но и качественные положительные результаты, недостижимые с помощью других методов.

Несмотря на большие перспективы применения электрофизических методов управления жизненными процессами растительных организмов, внедрение этих способов в растениеводстве задерживается так как до сего времени ещё недостаточно изучены механизм стимуляции и вопросы расчёта и конструирования соответствующих электроустановок.

В связи с вышесказанным разрабатываемая тема является весьма актуальной для виноградного питомниководства.

Цель и задачи исследования. Целью диссертационной работы является сюоснование режимных и конструктивных параметров установки для стимуляции корнеобразования черенков винограда электрическим током.

Для достижения этой цели в работе были поставлены и решены следующие задачи:

1. Исследовать токопроводящие свойства виноградных черенков.

2. Определить интенсивность стимуляции корнеобразования виноградных черенков от параметров электрического тока, воздействующего на них.

3. Исследовать влияние режимных и конструктивных параметров цепи подвода электрического тока к черенкам на результативность и энергетические показатели процесса стимуляции.

4. Обосновать оптимальные конструктивные и режимные параметры электродных систем и источника питания установки для стимуляций корнеобразования виноградных черенков электрическим током.

Объект исследования. Исследования проводились на черенках вино-| рлда сорта Периенец Магарача.

Научная новизна работы. Выявлена зависимость плотности тока, проникающего по черенку винограда как объекту электрообработки, от напря-, жённости электрического поля и экспозиции. Установлены режимы электрообработки (напряжённость электрического поля, экспозиция), соответст-нующие минимальным затратам энергии при максимальной эффективности стимуляции. Обоснованы параметры электродных систем и источника питания для электростимуляции черенков винограда.

Практическая ценность. Практическая ценность работы заключается в обосновании возможности улучшения корнеобразования черенков винограда

посредством стимуляции их электрическим током. Полученные зависимости и разработанная методика расчёта позволяют определить параметры установки и энергетически выгодные режимы электрообработки черенков винсьг-града.

Реализация результатов исследований. На основании проведённых исследований разработаны рекомендации по обоснованию режимов работы и параметров установки для предпосадочной обработки черенков винограда электрическим током, которые использованы при разработке опытного образца установки.

Установка для предпосадочной обработки черенков винограда внедрена в 1998 г. в АОЗТ «Родина» Крымского района Краснодарского края. Изготовление установки для предпосадочной электрообработки черенков произведено на кафедре «Применение электрической энергии» факультета электрификации Кубанского госагроуниверситета.

Апробация работы. Основные положения и результаты диссертационной работы доложены, обсуждены и одобрены на:

1. Ежегодных научных конференциях Кубанского ГАУ, г. Краснодар, 1992-1999 г.

2. Краевой конференции по вопросам научного обеспечения сельскохозяйственного производства в рамках «Второй школы-семинара молодых учёных», Кубанский ВНИИ риса, г. Краснодар, 1997 г.

3. Международной научно-технической конференции «Энергосбережение в сельском хозяйстве», ВИЭСХ, Москва, 1998г.

4. Научно-практической конференции «Ресурсосбережение в АПК Кубани», Кубанский ГАУ, Краснодар, 1998 г.

Объём и структура работы. Диссертация изложена на 124 страницах машинописного текста, содержит 47 рисунков, 3 таблицы и состоит из введе-

ния, пяти глав, выводов, списка использованной литературы из 109 наименований, в том числе 7 на иностранных языках, приложений.

В первой главе рассмотрены способы стимуляции корнеобразования черенков винограда; проведён анализ современного состояния процесса обработки растительных объектов электрофизическими методами.

Результаты анализа литературных источников показывают, что виноградарство и его составная часть - питомниководство нуждается в повышении выхода и качества посадочного материала винограда. Для получения первосортных саженцев винограда требуется предварительная подготовка черенков перед посадкой. Среди ряда известных способов предварительной подготовки виноградных черенков, в основе которых лежит стимуляция обмена веществ и выделения ауксинов, наиболее перспективным является обработка их электрическим током.

Вопросами использования электрического тока для обработки растительных объектов посвящены работы таких учёных как И.Ф. Бородина, В.И. Баева, Б.Р. Лазаренко, И.И. Мартыненко и других.

Протекание электрического тока по растительным тканям вызывает различные последействия, специфичность которых определяется дозой обработки. В настоящее время установлена принципиальная возможность осуществления электрообработки растительных объектов с целью стимуляции развития и роста растений, стимуляции прорастания семян, интенсификации сушки, уничтожения нежелательной растительности, прореживания всходов, ускорения созревания листьев табака, подсолнечника, стерилизации корней и стеблей хлопчатника.

Однако имеющиеся в известных литературных источниках результаты ранее

проведённых исследований недостаточны для обоснования режимных и конструктивных параметров установки для предпосадочной электростимуляции черенков винограда по ряду причин, главными из которых являются:

Исследование черенков винограда, как объектов электрообоработки, проведено без учета специфичности их анатомического строения при условиях, отличающихся от реальных условий электрообоработки;

Недостаточно полно раскрыт механизм воздействия стимулирующих факторов электрического тока на растительную ткань и отсутствуют сведения об определяемых этим механизмом оптимальных условий обработки;

Рабочие органы, для которых исследованы и обоснованы режимные и конструктивные параметры, или предназначены для электрообработки растительных объектов, существенно отличающихся от черенков винограда, или имеют особенности, исключающие их применение для предпосадочной электрообработки черенков винограда.

Всё это позволило определить задачи, решаемые в диссертационной работе.

Во второй главе на основании известных зависимостей воздействия электрического тока на растительные объекты проведено теоретическое исследование П1 зцесса обработки черенков винограда электрическим током.

Растительные ткани обладают активно-ёмкостной проводимостью только при малых уровнях напряжённости электрического поля. При увеличении напряжённости до значения, необходимого для проявления стимулирующего действия электрического тока, поляризационные свойства растительной ткани исчезают и её можно рассматривать как элемент электрической цепи, обладающей активной проводимостью.

Снижение энергетических и материальных затрат при электрообработке растительных тканей может быть достигнуто воздействием на них как постоянного так и переменного тока. Применительно к предпосадочной электро-

обработке виноградных черенков при выборе рода тока следует остановиться на обработке черенков переменным током промышленной частоты (50 Гц), реализация которой достигается простыми техническими средствами.

Для предпосадочной электрообработки черенков винограда наиболее приемлемым является подвод электрической энергии к черенку через токо-подводящую жидкость (рис.1), так как данный способ не требует сложного

Рис.1. Схема подвода электрической энергии к черенку винограда.

1 - электроды; 2 - черенок; 3 - токоподводящая жидкость.

технологического оборудования и совмещает электрообработку чсргнкос с" такой операцией, как замачивание. Ёмкость для электрообработки черенков выполняется из не токопроводящего материала.

В этом случае схему замещения можно представить в виде последовательно и параллельно соединённых резисторов (рис.2).

Мощность, поглощаемая черенком, расходуется на стимуляцию жизнедеятельности и используется полезно для технологического процесса электрообработки. Мощность, поглощаемая остальными элементами цепи обработки, не используется для прямого целенаправленного действия в совершаемом технологическом процессе и является в данном случае потерянной мощностью, снижающей энергетическую эффективность процесса.

В этом случае коэффициент полезного действия цепи обработки т) определяется отношением:

2Р, + Р2 + Р3

где Р[, Рг, Рз - количество мощности, поглощаемое резисторами Яь К2,

Рис.2. Схема замещения электрической цепи обработки. Бч - суммарное сопротивление токоподводящей жидкости между электродами и срезами черенка; Кг - сопротивление черенка; Яз - сопротивление токоподводящей жидкости шунтирующей черенок; Яп - сумма переходных сопротивлений контактов «электрод - токоподводящая жидкость» и «токоподводящая жидкость - черенок».

В рассматриваемом случае значениями переходных сопротивлений пренебрегаем.

Преобразуя мощность Р через произведение квадрата тока на сопротивление Я и проведя соответствующие преобразования, получим

2-11,-Кз-ьЯ;,-1*3+ (211,+112)2

Величины резисторов Яь Из, 11з определяются соотношениями К]=1^ж; К2=Ь_Рч. (3)

где 1) - расстояние между электродом и срезом черенка, м; Ь - длина черенка, м; Ь - расстояние между электродами, м;

Рж - удельное сопротивление токоподводящей жидкости, Ом-м; Рч - удельное сопротивление черенка, Ом-м;

Площадь электрода, которую перекрывает токоподводящая Жидкость, м2; 82 - сечение черенка, м2.

Подставляя (3) во (2), получим

12-P4-i3-Px"S?-S2

21i-Pac-b-S,-Sl + l2-p4-l3-pÄ-S?-S2+4lf-p|c-Sl-(S1-S2) +

41, Рж h ■ Рч" S, S2 (S, - S2) + \\ ■ р2ч Sf ■ (S, - S2)

Введём коэффициенты A = l2-13-S?-S2; B = 21j-13-S1-S2; C = 41?-S2-(S,-S2); D=41rl2-SrS2-(S1-S2); E = ll-S?-(S,-S2).

Приняв, что = k и проведя соответствующие преобразования, получим Рч

F ■ k + Q k + Е

где, F=B+C; Q=D+A. Для определения величины соотношения к соответствующего максимальному значению г) выражение (5) продифференцируем

А (Е - F к2)

(Р-к +(}-к+Е)

Находим критическую точку

Отсюда следует, что одним из путей достижения максимального коэффициента полезного действия установки для электрообработки черенков винограда, является подбор оптимального соотношения между удельными сопротивлениями токоподводящей жидкости и обрабатываемых черенков.

Для того, чтобы электроэнергия расходовалась с максимальным коэффициентом полезного действия необходимо произвести расчёт оптимального соотношения между объёмом токоподводящей жидкости и суммарным объёмом обрабатываемых черенков.

Формула для расчета электропроводности системы из двух компонентов (жидкость-черенки) представляется в виде

Уср = 71-Х1+у2-Х2, " (8)

где у| -электропроводность черенков; X] -объемная концентрация черенков; у 2-электропроводность жидкости; Х2 -объемная концентрация жидкости.

Отсюда следует

¿(Yi-YcpVX^O. .(10)

Примем Х-ф <Х|,тогда

2>1-Уср)-ХГ*=0 (11)

где Yi -электропроводность i-того компонента системы; Yep - электропроводность системы; X;-объемная концентрация i-того компонента системы;

Х?* - эффективная объемная концентрация i-того компонента системы. Отсюда

Х-ф = Х" , (12)

где f(y) > 1 и limf(y) = 1. (13)

Представляя функцию f(y) в виде ряда, получим

t(Yi-Vcp)-=0. (14)

Решив уравнение (для нашего случая i=2) и приняв d; = i, получим _(3Xi-l)-Yl+(2-3X,)-Y2

[(ЗХ,-1)-71+(2-ЗХ])-у2]2 у,.у2

При большой концентрации жидкости часть электроэнергии тратится на ее нагрев. Необходимо оптимизировать процесс для повышения эффективности.

Дня вычисления энергозатрат \У5 воспользуемся формулой Джоуля-Ленца

Уср и2, (16)

где Ws - энергия, потребляемая установкой. Пользуясь законом сохранения энергии, запишем

М^ТУ.-ТУ, (17)

где \\"„- полезная энергия, идущая на электрообработку черенков; У/- энергия, расходующаяся на электронагрев жидкости.

Для оптимизации необходимо решить уравнение ёХ,

Решая (18), получим /

Y Х: Z2 ■y2(l-X1)-U2. (19)

Зададим в виде

Х, -у, +(1 -X,)-у2

где X, - оптимальное значение концентрации черенков. Используя (15), (16), (17), (20) из (18) получим уравнение

Х5:+А1-Х, + В] =0,

2 2у2 - 7| . 1 ~ -->

(2у2 "У.) . 1 (У2~У\)

У! "(А-уг + ЗУ!)^

здесь А = 4К-3

Решение данного уравнения определяет оптимальное значение концен-эации черенков и имеет вид

" _ 1 2У2~У1 1 А"У2+3У1

з У2-У, 9 72-71 ,9-А2 ЗА + 9

I--У 2 + --У 2

В случае у2 >у[ уравнение (25) упрощается 1 3

Таким образом, оптимальное с энергетической точки зрения отношение:идкость-черенки для рассмотренного случая имеет вид

В третьей главе описывается методика и техника экспериментального

исследования процесса предпосадочной электрообработки черенков винограда.

Определение удельных сопротивлений проводилось для каждого из трёх слоёв черенка винограда. В качестве объектов исследования использовались свежесрезанные черенки.

С целью выявления граничных условий проведения полномасштабного эксперимента по исследованию воздействия электрического тока на корнеоб-разование черенков винограда был проведён эксперимент на одиночных

Рис.3. План проведения эксперимента, виноградных черенках по плану (рис.3).

По результатам проведения эксперимента на одиночных черенках проведено планирование эксперимента по обработке черенков в токоподводящей жидкости. При этом уровни напряжения, были выбраны с учётом результатов эксперимента на одиночных черенках и составили 5,10,15,30 вольт.

Разработана установка и исследованы параметры электрической цепи обработки виноградных черенков. Определён максимальный коэффициент полезного действия и оптимальное соотношение к.

Определение, удельного сопротивления токоподводящей жидкости и виноградных черенков проводилось по стандартной методике.

Наблюдение за побего- и корнеобразованием черенков винограда и проведение учётов проводилось по общепринятой методике.

В четвёртой главе приводятся результаты экспериментальных исследований процесса предпосадочной электрообработки виноградных черенков и обоснование режимных и конструктивных параметров установки для обработки черенков электрическим током.

Величина полного сопротивления зависит от вида растительной ткани. Полные сопротивления флоэмы и ксилемы одинаковы, но отличаются, от полного сопротивления сердцевины.

При воздействии на черенок, помещённый в токоподводящую жидкость, переменным током и постоянным (различной полярности подключения) с течением времени и при различной напряжённости электрического поля значение плотности тока не изменяется.

Экспериментальные исследования подтвердили теоретические выкладки о подборе оптимального соотношения между удельными сопротивлениями токоподводящей жидкости и обрабатываемых черенков. Установлено, что коэффициент полезного действия достигнет максимального значения в том случае, когда отношение удельного сопротивления токоподводящей жидкости к удельному сопротивлению черенков (к) будет находиться в пределе 2...3.

Исследуя результаты корнеобразования видно, что количество окоренившихся одиночных черенков, обработанных электрическим током с напряжённостью.электрического поля от14 до 33 В/м возросло на 20 процентов по сравнению с контролем. Предпочтительный режим обработки - переменным током (рис. 4).

При обработке черенков, помещённых в токоподводящую жидкость, переменным током промышленной частоты максимальное корнеобразование наблюдается при экспозиции 24 часа и напряжённости электрического поля в

Рис. 4. Зависимость корнеобразоваиия одиночных черенков винограда от напряжённости электрического поля и рода тока подводимого к черенкам. "

14 В"м 28 В-"м 43В"м 86В"м контроль

Рис.5. Зависимость степени корнеобразования черенков винограда от напряжённости электрического поля и экспозиции обработки. Обработка переменным током (50 Гц).

14 В/м. В данном режиме произошло стопроцентное укоренение черенков. В контрольной партии черенков укоренение составило 47,5% (рис.5).

Таким образом для стимуляции корнеобразования черенков винограда наиболее приемлемым является обработка черенков переменным током промышленной частоты с напряжённостью электрического поля 14 В/м и экспозицией обработки 24 часа.

В пятой главе рассмотрены вопросы разработки и испытания установки для предпосадочной обработки виноградных черенков электрическим током, приведены результаты производственных испытаний, дана агротехническая и экономическая оценка результатов её использования в хозяйстве.

Рис.6. Ёмкость для электрообработки виноградных черенков.

1 - боковые стенки; 2 - рёбра жёсткости; 3 - торцовые стенки; 4 - ярмо; 5 - прижимная планк<3; 6 - регулировочный винт; 7 - сливное отверстие.

На основании сформулированных по результатам исследований требо-аний разработана конструкция электродной системы (ёмкости) для электро-"бработки черенков винограда в токоподводящей жидкости (рис.6).

Разработана структурная схема стабилизированного блока питания ус-ановки для электрообработки черенков винограда (рис.7).

Рис.7 Структурная схема стабилизированного блока питания установки для электрообработки черенков винограда. "ПН - устройство повышения напряжения; УРН - устройство регулирования [апряжения; УП„Н - устройство понижения напряжения; БУ - блок управле-[ия; Н - нагрузка.

УПН повышает напряжение сети, а У^Н, включенный последовательно нагрузкой, гасит излишек напряжения. БУ, представляющий собой цепь от-шцателыюй обратной связи, вырабатывает сигнал, несущий информацию об ровне выходного напряжения.

Разработана и изготовлена схема электрическая принципиальная (рис.8).

Проведены производственные испытания установки для электростиму-яции корнеобразования черенков винограда. Обработке подверглись 5000 ¡еренков сорта Первенец Магарача. После выкопки, на 30 саженцах кон-рольного и опытного вариантов были сделаны соответствующие ззмеры.

Они показали, что обработка черенков винограда переменным элек-рическим током сказала положительное влияние на выход и качество вино-

Рис.8. Схема электрическая принципиальная стабилизированного блока питания установки для электрообработки черенков винограда.

рздных саженцев. Так, выход стандартных саженцев в опытном варианте казался на 12% больше, чем в контрольном.

По результатам производственных испытаний рассчитан экономиче-кий эффект применения установки для электростимуляции корнеобразова-;ия черенков винограда. Расчёты показывают, что сезонный экономический ффект состазляет 68,5 тыс. рублей с 1 га.

ЗАКЛЮЧЕНИЕ

1. Исследованиями и производственными испытаниями установлено, что гред-соадачная электростимуляция черенков винограда улучшает корнеоб-!азование черенков, что способствует более высокому выходу стандартных аженцев из школки.

2. Для осуществления электростимуляции черенков винограда целесо-»бразно применять переменный ток частотой 50 Гц, подводя его к черенкам ¡ерез токоподводящую жидкость.

3. Обоснованы оптимальные режимные параметры установки для элек-ростимулящш черенков винограда. Напряжённость электрического поля в юне обработки составляет 14 В/м, экспозиция обработки -24 "часа.

4. Производственные испытания, проведённые в АОЗТ "Родина" Крым-:кого района показали, что разработанная установка работоспособна и погоняет повысить выход стандартных саженцев на 12%.

5. Экономический эффект от применения установки для электростиму-1яции корнеобразования черенков винограда составляет 68,5 тыс. рублей с 1 ~а.

1. Перекотий Г,П., Кудряков А.Г., Винников A.B. Стимулирующее действие электрического тока на корнеобразование посадочного материала ви-нограда.//Электрификация сельскохозяйственного производства. - (Тр./Куб. ГАУ; Вып. 346 (374). - Краснодар, 1995. с.153 - 158.

2. Кудряков А.Г., Перекотий Г.П. Электростимуляция корнесбразовання виноградных черенков.// Новое в электротехнологии и электрооборудовании сельскохозяйственного производства. - (Тр./Куб. ГАУ; Вып. 354 (382). -Краснодар, 1996. - с.18 - 24.

3. Перекотий Г.П., Кудряков А.Г. Винников A.B. Электрифицированная полуавтоматическая установка для бандажирования виноградных прививок.// Новое в электротехнологии и электрооборудовании сельскохозяйственного производства. - (Тр./Куб. ГАУ; Вып. 354 (382). - Краснодар, 1996. - с.68 -75.

4. Перекотий Г.П., Кудряков А.Г. Винников A.B. и др. О механизме воздействия электрического тока на растительные объекты.// Научное обеспечение АПК Кубани. - (Тр./Куб. ГАУ; Вып. 357 (385). - Краснодар, 1997. - с. 145 - 147.

5. Перекотий Г. П., Кудряков А. Г., Хамула А. А. К вопросу о механизме воздействия электрического тока на растительные объекты.// Вопросы электрификации сельского хозяйства. - (Тр./Куб. ГАУ; Вып. 370 (298). - Краснодар, 1998.

6. Кудряков А.Г., Перекотий Г.П. Поиск оптимальных энергетических характеристик электрической цепи обработки черенков винограда.// Вопросы электрификации сельского хозяйства. - (ТрЖуб. ГАУ; Вып. 370 (298). -Краснодар, 1998.

7. Перекотий Г.П., Кудряков А.Г. Исследование энергетических характеристик цепи электрообработки черенков винограда.// Энергосберегающие

ВВЕДЕНИЕ.

Глава 1. СОВРЕМЕННОЕ СОСТОЯНИЕ ВОПРОСА И ЗАДАЧИ ИССЛЕДОВАНИЯ

1.1. Состояние и перспективы развития виноградарства.

1.2. Технология производства корнесобственного посадочного материала винограда.

1.3. Способы стимуляции корне- и побегообразования черенков винограда.

1.4. Стимулирующее действие на растительные объекты электрофизических факторов.

1.5. Обоснование способа стимуляции черенков винограда электрическим током.

1.6. Состояние вопроса конструктивных разработок устройств для электростимуляции растительного материала.

1.7. Выводы по обзору литературных источников. Задачи исследования.

Глава 2. ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ

2.1. Механизм стимулирующего действия электрического тока на растительные объекты.

2.2. Схема замещения черенка винограда.

2.3. Исследование энергетических характеристик электрической цепи обработки черенков винограда.

2.4. Теоретическое обоснование оптимального соотношения между объёмом токоподводящей жидкости и суммарного объёма обрабатываемых черенков.

Глава 3. МЕТОДИКА И ТЕХНИКА ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

3.1. Исследование черенка винограда как проводника электрического тока.

3.2. Методика проведения экспериментов по исследованию воздействия электрического тока на корнеобра-зование черенков винограда.

3.3 Методика проведения эксперимента по выявлению электрических параметров электрической цепи обработки.

3.4. Методика проведения учётов и наблюдений за побеге- и корнеобразованием черенков винограда.

Глава 4. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РЕЖИМОВ И ОБОСНОВАНИЕ ПАРАМЕТРОВ УСТАНОВКИ ДЛЯ ЭЛЕКТРОСТИМУЛЯЦИИ ПОСАДОЧНОГО МАТЕРИАЛА ВИНОГРАДА

4.1. Исследование электрофизических свойств виноградной лозы.

4.2. Стимуляция корнеобразования черенков винограда.

4.3. Исследование и обоснование параметров установки для электростимуляции корнеобразования черенков винограда.

4.4. Результаты исследования корнеобразования черенков винограда.

Глава 5. РАЗРАБОТКА И ИСПЫТАНИЯ УСТАНОВКИ ДЛЯ ЭЛЕКТРОСТИМУЛЯЦИИ ПОСАДОЧНОГО МАТЕРИАЛА ВИНОГРАДА, ТЕХНОЛО

ГИЧЕСКАЯ, АГРОТЕХНИЧЕСКАЯ И ЭКОНОМИЧЕСКАЯ ОЦЕНКИ РЕЗУЛЬТАТОВ ЕЁ ИСПОЛЬЗОВАНИЯ В ХОЗЯЙСТВАХ

5.1. Конструктивная разработка установки.

5.2. Результаты производственных испытаний установки для электростимуляции корнеобразования черенков винограда.

5.3. Агротехническая оценка.

5.4. Экономическая эффективность использования установки для электростимуляции корнеобразования черенков винограда.

Введение 1999 год, диссертация по процессам и машинам агроинженерных систем, Кудряков, Александр Георгиевич

В настоящее время выращиванием товарного винограда в Российской Федерации занимаются 195 специализированных виноградарских хозяйств, в 97 из которых имеются заводы по первичной переработке винограда.

Разнообразие почвенно-климатических условий выращивания винограда в России позволяет производить широкую гамму сухих, десертных, крепких и игристых вин, высококачественные коньяки.

Кроме того, виноделие следует рассматривать не только как средство производства алкогольной продукции, но и как основной источник финансирования развития виноградарства России, дающий потребительскому рынку столовые сорта винограда, виноградные соки, детское питание, сухие вина и другие экологически чистые продукты, жизненно необходимые населению страны (достаточно вспомнить Чернобыль и поставку туда красных столовых вин - единственного продукта, выводящего из человеческого организма радиоактивные элементы).

Использование винограда в свежем виде в эти годы не превышало 13 тыс. т, то есть его потребление на душу населения равнялось 0,1 кг вместо 7 - 12 кг по медицинским нормам.

В 1996 году было недобрано более 100 тыс. т винограда из-за гибели насаждении от вредителей и болезней, недополучено около 8 млн. дал виноградного вина на общую сумму 560-600 млрд. руб. (на приобретение же средств защиты урожая требовалось всего 25-30 млрд. руб.). Виноградарям нет никакого смысла расширять насаждения ценных технических сортов, так как при существующем ценообразовании и налогах все это просто убыточно. У виноделов потерян смысл в приготовлении высокоценных вин, так как у населения нет свободных денег на покупку натуральных виноградных вин, а бесчисленные коммерческие ларьки завалены десятками сортов дешёвой, неизвестно кем и как приготовленной водки.

Стабилизация отрасли в настоящее время зависит решения проблем на федеральном уровне: нельзя допустить дальнейшего ее разрушения, необходимо укрепить производственную базу и улучшить финансовое стояние предприятий. Поэтому уже с 1997 года особое внимание уделяется мерам, направленным на сохранение существующих насаждений и их продуктивности за счёт проведения всех работ по уходу за виноградниками на высоком агротехническом уровне. Одновременно в хозяйствах постоянно проводятся замена низкорентабельных, потерявших хозяйственную ценность насаждений, сортообновление и улучшение их структуры.

Перспективы дальнейшего развития виноградарства нашей страны требуют резкого увеличения производства посадочного материала, как основного фактора, задерживающего освоение новых площадей под виноградники. Несмотря на применение ряда биологических и агротехнических мероприятий по увеличению выхода первосортных корнесобственных саженцев, до настоящего времени их выход в некоторых хозяйствах крайне низок, что сдерживает расширение площадей виноградников.

Выращивание корнесобственных саженцев является сложным биологическим процессом, зависящем как от внутренних, так и внешних факторов произрастания растения.

Современное состояние науки даёт возможность управлять этими факторами посредством разного рода стимуляторов, в том числе и электрических, с помощью которых оказывается возможным активно вмешиваться в жизненный процесс растения и ориентировать его в нужном направлении.

Исследованиями советских и зарубежных учёных, среди которых следует отметить работы В.И. Мичурина, A.M. Басова, И.И. Гунара, Б.Р. Ла-заренко, И.Ф. Бородина установлено, что электрофизические методы и способы воздействия на биологические объекты, в том числе и на растительные организмы, в ряде случаев дают не только количественные, но и качественные положительные результаты, не достижимые с помощью других методов.

Несмотря на большие перспективы применения электрофизических методов управления жизненными процессами растительных организмов, внедрение этих способов в растениеводстве задерживается, так как до сего времени ещё недостаточно изучены механизм стимуляции и вопросы расчёта и конструирования соответствующих электроустановок.

В связи с вышесказанным разрабатываемая тема является весьма актуальной для виноградного питомниководетва.

Научная новизна проведённой работы заключается в следующем: выявлена зависимость плотности тока, протекающего по черенку винограда как объекту электрообработки, от напряжённости электрического поля и экспозиции. Установлены режимы электрообработки (напряжённость электрического поля, экспозиция), соответствующие минимальным затратам энергии. Обоснованы параметры электродных систем и источника питания для электростимуляции черенков винограда.

Основные положения, которые выносятся на защиту:

1. Обработка виноградных черенков электрическим током стимулирует корнеобразование, за счёт чего на 12 % увеличивается выход из школки стандартных саженцев.

2. Электростимуляцию виноградных черенков следует проводить переменным током промышленной частоты (50 гц) с подводом электроэнергии к ним через токоподводяшую жидкость. 8

3. Максимальный коэффициент полезного действия при электростимуляции виноградных черенков с подводом электроэнергии к ним через токоподводящую жидкость достигается при соотношении объёма жидкости к суммарному объёму обрабатываемых черенков как 1:2; при этом соотношение между удельными сопротивлениями токоподводящей жидкости и обрабатываемых черенков должно находится в пределе от 2 до 3.

4. Электростимуляция виноградных черенков должна производится при напряжённости электрического поля 14 В/м и экспозиции обработки 24 часа.

Заключение диссертация на тему "Стимуляция корнеобразования черенков винограда электрическим током"

105 ВЫВОДЫ

1. Исследованиями и производственными испытаниями установлено, что предпосадачная электростимуляция черенков винограда улучшает кор-необразование черенков, что способствует более высокому выходу стандартных саженцев из школки.

2. Для осуществления электростимуляции черенков винограда целесообразно применять переменный ток частотой 50 Гц, подводя его к черенкам через токоподводящую жидкость.

3. Обоснованы оптимальные режимные параметры установки для электростимуляции черенков винограда. Напряжённость электрического поля в зоне обработки составляет 14 В/м, экспозиция обработки - 24 часа.

4. Производственные испытания, проведённые в АОЗТ "Родина" Крымского района показали, что разработанная установка работоспособна и позволяет повысить выход стандартных саженцев на 12%.

5. Экономический эффект от применения установки для электростимуляции корнеобразования черенков винограда составляет 68,5 тыс. рублей с 1 га.

Библиография Кудряков, Александр Георгиевич, диссертация по теме Электротехнологии и электрооборудование в сельском хозяйстве

1. A.C. 1135457 (СССР). Устройство для стимулирования прививок электрическим током. С.Ю. Дженеев, A.A. Лучинкин, А.Н. Сербаев. Опубл. в Б. И., 1985, №3.

2. A.C. 1407447 (СССР). Устройство для стимуляции развития и роста растений. Пятницкий И.И. Опубл. в Б. И. 1988, № 25.

3. A.C. 1665952 (СССР). Способ выращивания растений.

4. A.C. 348177 (СССР). Устройство для стимуляции черенкового материала. Северский Б.С. Опубл. в Б. И. 1972, № 25.

5. A.C. 401302 (СССР). Устройство для прореживания растений./ Б.М. Скороход, A.C. Кащурко. Опубл. в Б. И, 1973, № 41.

6. A.C. 697096 (СССР). Способ стимулирования прививок. A.A. Лучинкин, С.Ю. Джанеев, М.И. Таукчи. Опубл. в Б. И., 1979, № 42.

7. A.C. 869680 (СССР). Способ обработки виноградных прививок./ Жген-ти Т.Г., Когорашвили B.C., Нишнианидзе К.А., Бабиашвили Ш.Л., Хо-мерики Р.В., Якобашвили В.В., Датуашвили В.Л. Опубл. в Б. И., 1981, №37.

8. A.C. 971167 СССР. Способ кильчевания виноградных черенков / Л.М. Малтабар, П.П. Радчевский. опубл. 07.11.82. // Открытия, изобретения, промышленные образцы, товарные знаки. - 1982. - № 41.

9. A.C. 171217 (СССР). Устройство для стимуляции черенкового материала. Кучава Г.Д. и др.

10. Ю.Алкиперов P.A. Применение электричества для борьбы с сорняками. -В кн.: труды Туркменского с. х. института. Ашхабад, 1975, вып. 18, №1, с. 46-51.11 .Ампелография СССР: Отечественные сорта винограда. М.: Лёг. и пищ. пром-сть, 1984.

11. Баев В.И. Оптимальные параметры и режимы работы разрядного контура при электроискровой предуборочной обработке подсолнечника. -Дисс. . канд. техн. наук. Волгоград, 1970. - 220 с.

12. Баран А.Н. К вопросу о механизме воздействия электрического тока на процесс электротермохимической обработки. В кн.: Вопросы механизации и электрификации с. х.: Тезисы докладов Всесоюзной школы учёных и специалистов. Минск, 1981, с. 176- 177.

13. Басов A.M. и др. Влияние электрического поля на корнеобразование у черенков. Сад и огород. 1959. № 2.

14. Басов A.M. и др. Стимуляция прививок яблони электрическим полем. Труды ЧИМЭСХ, Челябинск, 1963, вып. 15.

15. Басов A.M., Быков В.Г., и др. Электротехнология. М.: Агропромиз-дат,1985.

16. Басов A.M., Изаков Ф.Я. и др. Электрозерноочистительные машины (теория, конструкция, расчёт). М.: Машиностроение, 1968.

17. Батыгин Н.Ф., Потапова С.М. и др. Перспективы использования факторов воздействия в растиниеводстве. М.: 1978.

18. Беженарь Г.С. Исследование процесса электрообработки массы растений переменным током на косилках плющилках. Дисс. . канд. техн. наук. - Киев, 1980. - 206 с.

19. Блонская А.П., Окулова В.А. Предпосевная обработка семян сельскохозяйственных культур в электрическом поле постоянного тока в сравнении с другими физическими методами воздействия. Э.О.М., 1982, № 3.

20. Бойко A.A. Интенсификация механического обезвоживания зеленой массы. Механизация и электрификация соц. сел. хозяйства, 1995, № 12, с. 38-39.

21. Болгарев П.Т. Виноградарство. Симферополь, Крымиздат, 1960.

22. Бурлакова Е.В. и др. Малый практикум по биофизике. М.: Высшая школа, 1964.-408 с.

23. Виноградное питомниководство Молдавии. К., 1979.

24. Воднев В.Т., Наумович А.Ф., Наумович Н.Ф. Основные математические формулы. Минск, Вышэйшая школа, 1995.

25. Войтович К.А. Новые комплексно-устойчивые сорта винограда и методы их получения. Кишинёв: Картя Молдовеняске, 1981.

26. Гайдук В.Н. Исследование электротепловых свойств соломенной резки и расчёт электродных запарников: Автореф. дисс. . канд. техн. наук. -Киев, 1959, 17 с.

27. Гартман Х.Т., Кестер Д.Е. Размножение садовых растений. М.: 1963.

28. Гасюк Г.Н.,Матов Б.М. Обработка винограда электрическим током повышенной частоты перед прессованием. Консервная и овощесушильная промышленность, 1960, № 1, с. 9 11.31 .Голинкевич Г.А. Прикладная теория надёжности. М.: Высшая школа, 1977.- 160 с.

29. Грабовский Р.И. Курс физики. М.: Высшая школа, 1974.

30. Гузун Н.И. Новые сорта винограда Молдавии. Листок / МСХ СССР. -Москва: Колос, 1980.

31. Гунар И.И. Проблема раздражимости растений и дальнейшее развитие физиологии растений. Извест. Тимирязевской с. х. академии, вып. 2, 1953.

32. Дудник H.A., Щигловская В.И. Ультразвук в виноградном питомнико-водстве. В сб.: Виноградарство. - Одесса: Одесск. с. - х. ин-т, 1973, с. 138- 144.

33. Живописцев E.H. Электротехнология в сельскохозяйственном производстве. М.: ВНИИТЭИСХ, 1978.

34. Живописцев E.H., Косицин O.A. Электротехнология и электроосвещение. М.: ВО Агропромиздат, 1990.

35. Заявка № 2644976 (Франция). Способ стимулирования роста растений и/или деревьев и постоянные магниты для их осуществления.

36. Заявка № 920220 (Япония). Способ повышения продуктивности растительного и животного мира. Хаясихара Такэси.

37. Калинин Р.Ф. Повышение выхода черенков винограда и активация образования каллуса при прививке. В сб.: Уровни организации процессов у растений. - Киев: Наукова думка, 1981.

38. Каляцкий И.И., Синебрюхов А.Г. Энергетические характеристики канала искрового разряда импульсного пробоя различных диэлектрических сред. Э.О.М.,1966, № 4, с. 14 - 16.

39. Карпов Р.Г., Карпов Н.Р. Элктрорадиоизмерения. М.: Высшая школа, 1978.-272 с.

40. Киселёва P.A. Янтарная кислота как стимулятор роста привитых саженцев винограда. Агрономия, 1976, №5, с.133 - 134.

41. Коберидзе A.B. Выход в питомнике прививок виноградной лозы, обработанных стимуляторами роста. В сб.: Рост растений, Львов: Львовск. ун-т, 1959, с. 211-214.

42. Колесник JI.B. Виноградарство. К., 1968.

43. Кострикин И.А. Ещё раз о питомниководетве. "Виноград и вино России", №1, 1999, с. 10-11.

44. Кравцов A.B. Электрические измерения. М. ВО Агропромиздат, 1988. - 240 с.

45. Кудряков А.Г, Перекотий Г.П. Поиск оптимальных энергетических характеристик электрической цепи обработки черенков винограда. .// Вопросы электрификации сельского хозяйства. (Тр./Куб. ГАУ; Вып. 370 (298). - Краснодар, 1998.

46. Кудряков А.Г, Перекотий Г.П. Электростимуляция корнеобразования виноградных черенков.// Новое в электротехнологии и электрооборудовании сельскохозяйственного производства. - (Тр./Куб. ГАУ; Вып. 354 (382). Краснодар, 1996. - с. 18 - 24.

47. Куликова Т.И., Касаткин H.A., Данилов Ю.П. О возможности использования импульсного напряжения для предпосадочной электростимуляции картофеля. Э.О.М., 1989,№ 5, с. 62 63.

48. Лазаренко Б.Р. Интенсификация процесса извлечения сока электрическими импульсами. Консервная и овощесушильная промышленность, 1968, № 8, с. 9 - 11.

49. Лазаренко Б.Р., Решетько Э.В. Исследование влияния электрических импульсов на сокоотдачу растительного сырья. Э.О.М., 1968, № 5, с. 85-91.

50. Луткова И.Н., Олешко П.М., Быченко Д.М. Влияние токов высокого напряжения на укоренение черенков винограда. В и ВСССРД962, № 3.

51. Лучинкин A.A. О стимулирующем действии электрического тока на виноградные прививки. УСХА. Научные труды. Киев, 1980, вып. 247.

52. Макаров В.Н. и др. О влиянии СВЧ-облучения на рост плодовоягодных культур. ЭОМ. № 4. 1986.

53. Малтабар JI.M., Радчевский П.П. Руководство по производству прививок винограда на месте, Краснодар, 1989.

54. Малтабар Л.М., Радчевский П.П., Кострикин И.А. Ускоренное создание маточников интенсивного и суперинтенсивного типа. Виноделие и виноградарство СССР. 1987. - №2.

55. Малых Г.П. Состояние и перспективы развития питомниководства в России. "Виноград и вино России", №1, 1999, с. 8 10.

56. Мартыненко ИИ. Проектирование, монтаж и эксплуатация систем автоматики. М.: Колос. 1981. - 304 с.

57. Матов Б.М., Решетько Э.В. Электрофизические методы в пищевой промышленности. Кишинёв.: Картя Молдавеняскэ,1968, - 126 с.

58. Мельник С.А. Производство виноградного посадочного материала. -Кишинев: Госиздат Молдавии, 1948.

59. Мержаниан A.C. Виноградарство: 3-е изд. М., 1968.

60. Мичурин И.В. Избранные сочинения. М.: Сельхозгиз,1955.

61. Мишуренко А.Г. Виноградный питомник. 3-е изд. - М., 1977.

62. Павлов И.В. и др. Электрофизические методы предпосевной обработки семян. Механиз. и электрификация с. х. 1983. № 12.

63. Панченко А.Я., Щеглов ЮА. Электрическая обработка свекловичной стружки переменным электрическим током. Э.О.М., 1981,№ 5, с. 76 -80.

64. Пелих М.А. Справочник виноградаря. 2-е изд. - М., 1982.

65. Перекотий Г. П., Кудряков А. Г., Хамула А. А. К вопросу о механизме воздействия электрического тока на растительные объекты.// Вопросы электрификации сельского хозяйства. (Тр./Куб. ГАУ; Вып. 370 (298). -Краснодар, 1998.

66. Перекотий Г.П. Исследование процесса предуборочной обработки растений табака электрическим током. Дис. . канд. техн. наук. - Киев, 1982.

67. Перекотий Г.П., Кудряков А.Г. Винников A.B. и др. О механизме воздействия электрического тока на растительные объекты.// Научное обеспечение АПК Кубани. (Тр./Куб. ГАУ; Вып. 357 (385). - Краснодар, 1997.-с. 145- 147.

68. Перекотий Г.П., Кудряков А.Г. Исследование энергетических характеристик цепи электрообработки черенков винограда.// Энергосберегающие технологии и процессы в АПК (тезисы докладов научной конференции по итогам 1998 г.). КГАУ, Краснодар, 1999.

69. Пилюгина В.В. Электротехнологические способы стимуляции укоренения черенков, ВНИИЭСХ, НТБ по электрификации с. х., вып. 2 (46), Москва, 1982.

70. Пилюгина В.В., Регуш A.B. Электромагнитная стимуляция в растениеводстве. М.: ВНИИТЭИСХ, 1980.

71. Писаревский В.Н. и др. Электроимпульсное стимулирование семян кукурузы. ЭОМ. № 4, 1985.

72. Потебня A.A. Руководство по виноградарству. СПб, 1906.

73. Производство винограда и вина в России и перспективы его развития. "Виноград и вино России", №6, 1997, с. 2 5.

74. Радчевский П.П. Способ электрокильчевания виноградных черенков. Информ. Листок №603-85, Ростов, ЦНТИД985.

75. Радчевский П.П., Трошин Л.П. Методическое пособие по изучению сортов винограда. Краснодар, 1995.

76. Решетько Э.В. Использование электроплазмолиза. Механизация и электрификация соц. с. х., 1977, № 12, с. 11 - 13.

77. Савчук В.Н. Исследование электрической искры как рабочего органа предуборочной обработки подсолнечника. Дис. . канд. техн. наук. -Волгоград, 1970, - 215 с.

78. Саркисова М.М. Значение регуляторов роста в процессе вегетативного размножения, роста и плодоношения виноградной лозы и плодовых растений.: Автореф. дис. . доктора биолог, наук. Ереван, 1973- 45 с.

79. Свиталка Г.И. Исследование и выбор оптимальных параметров электроискрового прореживания всходов сахарной свеклы: Автореф. дис. . канд. техн. наук. Киев, 1975, - 25 с.

80. Серёгина М.Т. Электрическое поле как фактор воздействия обеспечивающий снятие периода покоя и активизацию ростовых процессов у растений лука репчатого на П3 этапе органогенеза. ЭОМ, № 4, 1983.

81. Серёгина М.Т. Эффективность использования физических факторов при предпосадочной обработке клубней картофеля. ЭОМ., № 1, 1988.

82. Соколовский A.B. Разработка и исследование основных элементов агрегата для предуборочной электроискровой обработки подсолнечника. Дис. . канд. техн. наук. - Волгоград, 1975, - 190 с.

83. Сорочану Н.С. Исследование электроплазмолиза растительных материалов с целью интенсификации процесса их сушки: Автореф. дис. . канд. техн. наук. Челябинск, 1979, - 21 с.

84. Тавадзе П.Г. Влияние стимуляторов роста на выход первосортных прививок у виноградной лозы. Докл. АН УССР, сер. Биол. науки, 1950, №5, с. 953-955.

85. Тарьян И. Физика для врачей и биологов. Будапешт, Медицинский университет, 1969.

86. Тихвинский И.Н., Кайсын Ф.В., Ланда Л.С. Влияние электрического тока на процессы регенерации черенков винограда. СВ и ВМ, 1975, № 3

87. Трошин Л.П., Свириденко H.A. Устойчивые сорта винограда: Справ, изд. Симферополь: Таврия, 1988.

88. Турецкая Р.Х. Физиология корнеобразования у черенков и стимуляторы роста. М.: Изд-во АН СССР, 1961.

89. Тутаюк В.Х. Анатомия и морфология растений. М.: Высшая школа, 1980.

90. Фоэкс Г. Полный курс виноградарства. СПб, 1904.

91. Фурсов С.П., Бордиян В.В. Некоторые особенности электроплазмолиза растительной ткани при повышенной частоте. Э.О.М., 1974, № 6, с. 70 -73.

92. Чайлахян М.Х., Саркисова М.М. Регуляторы роста у виноградной лозы и плодовых культур. Ереван: Изд-во АН Арм.ССР, 1980.

93. Червяков Д.М. Исследование электрического и механического воздействия на интенсивность сушки травы: Автореф. дис. . канд. техн. наук. -Челябинск, 1978, 17 с.

94. Шерер В.А., Гадиев Р.Ш. Применение регуляторов роста в виноградарстве и питомниководстве. Киев: Урожай, 1991.

95. Энциклопедия виноградарства в 3 т., том 1. Кишинёв, 1986.

96. Энциклопедия виноградарства в 3 т., том 2. Кишинёв, 1986.

97. Энциклопедия виноградарства в 3 т., том 3. Кишинёв, 1987.

98. Пупко В.Б. Реакщя виноградно1 лози на дно електромагштного поля. В зб.: Виноградарство i виноробство. - Киев: Урожай, 1974,№ 17.

99. Aktivace prerozenych elektickych proudu typu geo-fyto u sazenic revy virnie. Zahradnicfvi, 1986, 13.

100. Bobiloff W., Stekken van Hevea braziliensis, Meded. Alg. Proefst. Avros. Rubberserie, 94,123 126, 1934.

101. Christensen E., Root production in plants following localized stem irradiation, Science,119, 127-128, 1954.

102. Hunter R. E. The vegetative propagation of citrus, Trop. Agr., 9, 135 - 140, 1932.

103. Thakurta A. G., Dutt В. K. Vegetative propagation on mango from gootes (marcotte) and cuttings by treatment of high concentration auxin, Cur. Sci., 10, 297, 1941.

104. Seeliger R. Der neue Wienbau Crundlangen des Anbaues von Pfropfreben. -Berlin, 1933.-74p.рЩ^УТВЕРЖДАЮр по научной работе о ГАУ, профессор Ю.Д. Северин ^1999г.116

Электро-стимулятор роста растений

Солнечные элементы действительно поражают воображение, как только вспоминаешь о необыкновенном множестве их применения. Действительно, область применения солнечных элементов достаточно широка.

Ниже описывается применение, в которое трудно будет поверить. Речь идет о фотоэлектропреобразователях, стимулирующих рост растений. Звучит неправдоподобно?

Рост растения

Для начала лучше всего познакомиться с основами жизни растений. Большинству читателей хорошо известно явление фотосинтеза, который является основной движущей силой в жизни растений. По существу фотосинтез представляет собой процесс, благодаря которому солнечный свет позволяет осуществить питание растений.

Хотя процесс фотосинтеза значительно сложнее объяснения, которое возможно и уместно в данной книге, этот процесс заключается в следующем. Лист каждого зеленого растения состоит из тысяч отдельных клеток. Они содержат вещество, называемое хлорофиллом, которое между прочим и придает зеленую окраску листьям. Каждая такая клеточка является химическим заводом в миниатюре. Когда частица света, называемая фотоном, попадает в клетку, она поглощается хлорофиллом. Высвобождаемая при этом энергия фотона активизирует хлорофилл и дает начало ряду превращений, приводящих в конечном итоге к образованию сахара и крахмала, которые усваиваются растениями и стимулируют рост.

Эти вещества хранятся в клетке, пока не понадобятся растению. С уверенностью можно предположить, что количество питательных веществ, которыми лист может обеспечить растение, прямо пропорционально количеству солнечного света, падающего на его поверхность. Это явление похоже на преобразование энергии солнечным элементом.

Несколько слов о корнях

Однако растению одного солнечного света недостаточно. Чтобы вырабатывать питательные вещества, лист должен иметь исходное сырье. Поставщиком таких веществ является развитая корневая система, через которую они всасываются из почвы*.(* Не только из почвы, но и из воздуха. К счастью для человека и животных, растения дышат днем углекислым газом, которым мы постоянно обогащаем атмосферу, выдыхая воздух, в составе которого отношение углекислого газа к кислороду значительно увеличено по сравнению с воздухом, вдыхаемым нами ). Корни, представляющие собой сложную структуру, так же важны для развития растения, как и солнечный свет.

Обычно корневая система столь же обширна и разветвленна, как и растение, которое она питает. Например, может оказаться, что здоровое растение высотой 10 см имеет корневую систему, уходящую в землю на глубину 10 см. Конечно, так бывает не всегда и не у всех растений, но, как правило, это так.

Следовательно, было бы логично ожидать, что если бы удалось каким-либо образом усилить рост корневой системы, то верхняя часть растения последовала бы ее примеру и на столько же выросла бы. В действительности так оно и происходит. Было обнаружено, что благодаря непонятному еще до конца действию слабый электрический ток действительно способствует развитию корневой системы, а следовательно, и росту растения. Предполагается, что подобная стимуляция электрическим током в самом деле дополняет энергию, получаемую обычным путем при фотосинтезе.

Фотоэлектричество и фотосинтез

Солнечный элемент, как и клетки листа при фотосинтезе, поглощает фотон света и преобразует его энергию в электрическую. Однако солнечный элемент в отличие от листа растения выполняет функцию преобразования намного лучше. Так, обычный солнечный элемент преобразует в электрическую энергию по крайней мере 10% падающего на него света. С другой стороны, при фотосинтезе в энергию преобразуется едва ли не 0,1% падающего света.

Рис. 1. Есть какая-либо польза от стимулятора корневой системы? Это можно решить, взглянув на фотографию двух растений. Оба они одного типа и возраста, росли в идентичных условиях. У растения слева располагался стимулятор корневой системы.

Для эксперимента были выбраны саженцы длиной 10 см. Они росли в помещении при слабом солнечном освещении, проникающем через окно, расположенное на значительном расстоянии. Никаких попыток отдать предпочтение какому-либо растению не делалось, кроме того, что лицевая панель фотоэлектрического элемента была ориентирована в направлении солнечного света.

Эксперимент продолжался около 1 мес. Эта фотография сделана на 35-й день. Обращает внимание тот факт, что растение со стимулятором корневой системы более, чем в 2 раза крупнее контрольного растения.

При подключении одного солнечного элемента к корневой системе растения имеет место стимуляция ее роста. Но здесь есть одна хитрость. Она заключается в том, что стимуляция роста корней дает лучшие результаты у затененных растений.

Исследования показали, что для растений, освещаемых ярким солнечным светом, пользы от стимуляции корневой системы мало или нет совсем. Вероятно, это потому, что таким растениям вполне достаточно энергии, получаемой при фотосинтезе. По-видимому, эффект стимуляции проявляется лишь тогда, когда единственным источником энергии для растения является фотоэлектрический преобразователь (солнечный элемент).

Однако следует помнить, что солнечный элемент преобразует свет в энергию значительно эффективнее, чем лист при фотосинтезе. В частности, он может преобразовать в полезное количество электроэнергии свет, который для растения был бы просто бесполезен, например свет от люминесцентных ламп и ламп накаливания, ежедневно используемых для освещения помещений. Опыты также показывают, что у семян, подвергшихся воздействию слабого электрического тока, ускоряется прорастание и увеличивается число побегов и в конечном счете - урожайность.

Конструкция стимулятора роста

Все, что необходимо для проверки теории, - это один-единственный солнечный элемент. Однако еще потребуется пара электродов, которые можно было бы легко воткнуть в землю вблизи корней (рис. 2).

Рис. 2. Можно быстро и просто испытать стимулятор корневой системы, воткнув в землю вблизи растения пару длинных гвоздей и соединив их проводами с каким-либо солнечным элементом.

Размер солнечного элемента в принципе не имеет значения, поскольку сила тока, требуемая для стимуляции корневой системы, ничтожно мала. Однако для достижения наилучших результатов поверхность солнечного элемента должна быть достаточно большой, чтобы улавливать больше света. С учетом этих условий для стимулятора корневой системы был выбран элемент диаметром 6 см.

К диску элемента были подсоединены два стержня из нержавеющей стали. Один из них был припаян к тыльному контакту элемента, другой - к верхней токосъемной сетке (рис. 3). Однако использовать элемент в качестве крепления для стержней не рекомендуется, так как он слишком хрупок и тонок.

Рис. 3

Лучше всего солнечный элемент закрепить на металлической пластине (преимущественно из алюминия или нержавеющей стали) несколько больших размеров. Убедившись в надежности электрического контакта пластинки с тыльной стороны элемента, можно подсоединить один стержень к пластине, другой - к токосъемной решетке.

Можно собрать конструкцию и по-другому: поместить элемент, стержни и все остальное в пластмассовый защитный футляр. Для этой цели вполне подойдут коробочки из тонкой прозрачной пластмассы (используемые, например, для упаковки юбилейных монет), которые можно найти в галантерейном, хозяйственном магазине или магазине канцелярских товаров. Необходимо лишь так укрепить металлические стержни, чтобы они не прокручивались и не гнулись. Можно даже залить все изделие жидким отверждающимся полимерным составом.

Однако следует иметь в виду, что при отверждении жидких полимеров происходит усадка. Если элемент и присоединенные стержни надежно закреплены, то никаких осложнений не возникнет. Плохо закрепленный стержень при усадке полимерного компаунда может разрушить элемент и вывести его из строя.

Элемент также нуждается в защите от воздействия внешней среды. Кремниевые солнечные элементы слегка гигроскопичны, способны впитывать небольшое количество воды. Конечно, со временем вода немного проникает внутрь кристалла и разрушает наиболее подверженные воздействию атомные связи *. (* Механизм деградации параметров солнечных элементов под воздействием влаги иной: прежде всего происходит коррозия металлических контактов и отслоение просветляющих покрытий, появление на торцах солнечных элементов проводящих перемычек, шунтирующих р-n-переход. ). В результате ухудшаются электрические характеристики элемента, и в конце концов он полностью выходит из строя.

Если элемент залит подходящим полимерным составом, можно считать проблему решенной. Другие способы крепления элемента потребуют и других решений.

Список деталей
Солнечный элемент диаметром 6 см два стержня из нержавеющей стали длиной около 20 см Подходящая коробка из пластмассы (см. текст).

Эксперимент со стимулятором роста

Теперь, когда стимулятор готов, необходимо воткнуть два металлических стержня в землю вблизи корней. Все остальное сделает солнечный элемент.

Можно поставить такой простой эксперимент. Взять два одинаковых растения, желательно выращенных в аналогичных условиях. Рассадить их в отдельные горшки. В один из горшков воткнуть электроды стимулятора корневой системы, а второе растение оставить для контроля. Теперь необходимо одинаково ухаживать за обоими растениями, одновременно поливая их и уделяя им равное внимание.

Примерно через 30 дней можно заметить поразительное различие между двумя растениями. Растение со стимулятором корневой системы будет явно выше контрольного растения и на нем будет больше листьев. Этот эксперимент лучше всего проводить в помещении, используя лишь искусственное освещение.

Стимулятор можно использовать для комнатных растений, поддерживая их в здоровом состоянии. Садовод или человек, занимающийся разведением цветов, может использовать его для ускоренного прорастания семян или улучшения корневой системы растений. Независимо от вида использования данного стимулятора можно хорошо поэкспериментировать в этой области.

Начнем с того, что индустрия сельского хозяйства разрушена до основания. Что дальше? Не пора ли собирать камни? Не пора ли объединить все творческие силы, чтобы дать селянам и дачникам те новинки, которые позволят резко поднять урожайность, сократить ручной труд, найти новые пути в генетике... Я бы предложил читателям журнала быть авторами рубрики "Для села и дачников". Начну с давней работы "Электрическое поле и урожайность."

В 1954 г., когда я был слушателем Военной академии связи в Ленинграде, страстно увлекся процессом фотосинтеза и провел интересное испытание с выращиванием лука на подоконнике. Окна комнаты, в которой я жил, выходили на север, и потому солнца луковицы получать не могли. Я высадил в два удлиненных ящика по пять луковиц. Землю брал в одном и том же месте для обоих ящиков. Удобрений у меня не было, т.е. были созданы как бы одинаковые условия для выращивания. Над одним ящиком сверху, на расстоянии полуметра (рис.1) расположил металлическую пластину, к которой прикрепил провод от высоковольтного выпрямителя +10 000 В, а в землю этого ящика воткнул гвоздь, к которому подсоединил "-" провод от выпрямителя.

Сделал это для того, что по моей теории катализа создание в зоне растений высокого потенциала приведет к увеличению дипольного момента молекул, участвующих в реакции фотосинтеза, И потянулись дни испытаний. Уже через недели две я обнаружил, что в ящике с электрическим полем растения развиваются более эффективно, чем в ящике без "поля"! Спустя 15 лет этот эксперимент повторили в институте, когда потребовалось добиться выращивания растений в космическом корабле. Там, находясь в замкнутом от магнитного и электрического полей, растения развиваться не могли. Пришлось создавать искусственное электрическое поле, и теперь на космических кораблях растения выживают. А если вы живете в железобетонном доме, да еще на верхнем этаже, разве ваши растения в доме не страдают от отсутствия электрического (да и магнитного) поля? Суньте гвоздь в землю цветочного горшка, а проводок от него подсоедините к очищенной от краски или ржавчины отопительной батареи. В этом случае ваше растение приблизится к условиям жизни на открытом пространстве, что очень важно для растений да и для человека тоже!

Но на этом мои испытания не закончились. Проживая в г.Кировограде, я решил развести на подоконнике помидоры. Однако зима наступила столь быстро, что я не успел выкопать на огороде кусты помидор, чтобы пересадить их в цветочные горшки. Мне попался примерзший куст с небольшим живым отросточком. Я принес его домой, поставил в воду и... О, радость! Через 4 дня от нижней части отростка выросли белые корешки. Я пересадил его в горшок, и, когда он вырос с отростками, стал таким же методом получать новые саженцы. Всю зиму я лакомился свежими помидорами, выращенными на подоконнике. Но меня преследовал вопрос: неужели возможно в природе такое клонирование? Возможно, подтверждали мне старожилы в этом городе. Возможно, но...

Я переехал в Киев и попытался таким же образом получить саженцы помидор. У меня ничего не получилось. И я понял, что в Кировограде мне удавался этот метод потому, что там, в то время, когда я жил, в водопроводную сеть пускали воду из скважин, а не из Днепра, как в Киеве. Грунтовые воды в Кировограде имеют небольшую долю радиоактивности. Вот это и сыграло роль стимулятора роста корневой системы! Тогда я приложил к верхушке отростка помидора +1,5 В от батарейки, а "-" подвел к воде сосуда, где стоял отросток (рис.2), и через 4 дня на отростке, находящемся в воде, выросла густая "борода"! Так мне удалось клонировать отростки помидор.

Недавно мне надоело следить за поливом растений на подоконнике, я сунул в землю полоску фольгированного стеклотекстолита и большой гвоздь. К ним подсоединил провода от микроамперметра (рис.3). Сразу отклонилась стрелка, потому что земля в горшке была сырая, и сработала гальваническая пара "медь - железо". Через неделю увидел, как ток стал падать. Значит, наступала пора полива... Кроме того, растение выбросило новые листочки! Так растения реагируют на электричество.

Глава 1. СОВРЕМЕННОЕ СОСТОЯНИЕ ВОПРОСА И ЗАДАЧИ ИССЛЕДОВАНИЯ

1.1. Состояние и перспективы развития виноградарства.

1.2. Технология производства корнесобственного посадочного материала винограда.

1.3. Способы стимуляции корне- и побегообразования черенков винограда.

1.4. Стимулирующее действие на растительные объекты электрофизических факторов.

1.5. Обоснование способа стимуляции черенков винограда электрическим током.

1.6. Состояние вопроса конструктивных разработок устройств для электростимуляции растительного материала.

1.7. Выводы по обзору литературных источников. Задачи исследования.

Глава 2. ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ

2.1. Механизм стимулирующего действия электрического тока на растительные объекты.

2.2. Схема замещения черенка винограда.

2.3. Исследование энергетических характеристик электрической цепи обработки черенков винограда.

2.4. Теоретическое обоснование оптимального соотношения между объёмом токоподводящей жидкости и суммарного объёма обрабатываемых черенков.

Глава 3. МЕТОДИКА И ТЕХНИКА ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

3.1. Исследование черенка винограда как проводника электрического тока.

3.2. Методика проведения экспериментов по исследованию воздействия электрического тока на корнеобра-зование черенков винограда.

3.3 Методика проведения эксперимента по выявлению электрических параметров электрической цепи обработки.

3.4. Методика проведения учётов и наблюдений за побеге- и корнеобразованием черенков винограда.

Глава 4. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РЕЖИМОВ И ОБОСНОВАНИЕ ПАРАМЕТРОВ УСТАНОВКИ ДЛЯ ЭЛЕКТРОСТИМУЛЯЦИИ ПОСАДОЧНОГО МАТЕРИАЛА ВИНОГРАДА

4.1. Исследование электрофизических свойств виноградной лозы.

4.2. Стимуляция корнеобразования черенков винограда.

4.3. Исследование и обоснование параметров установки для электростимуляции корнеобразования черенков винограда.

4.4. Результаты исследования корнеобразования черенков винограда.

Глава 5. РАЗРАБОТКА И ИСПЫТАНИЯ УСТАНОВКИ ДЛЯ ЭЛЕКТРОСТИМУЛЯЦИИ ПОСАДОЧНОГО МАТЕРИАЛА ВИНОГРАДА, ТЕХНОЛО

ГИЧЕСКАЯ, АГРОТЕХНИЧЕСКАЯ И ЭКОНОМИЧЕСКАЯ ОЦЕНКИ РЕЗУЛЬТАТОВ ЕЁ ИСПОЛЬЗОВАНИЯ В ХОЗЯЙСТВАХ

5.1. Конструктивная разработка установки.

5.2. Результаты производственных испытаний установки для электростимуляции корнеобразования черенков винограда.

5.3. Агротехническая оценка.

5.4. Экономическая эффективность использования установки для электростимуляции корнеобразования черенков винограда.

Рекомендованный список диссертаций

  • Биологические аспекты ускоренного размножения винограда в условиях Дагестана 2005 год, кандидат биологических наук Баламирзоева, Зульфия Мирзебалаевна

  • Система производства посадочного материала винограда высших категорий качества 2006 год, доктор сельскохозяйственных наук Кравченко, Леонид Васильевич

  • Роль микромицетов в этиологии сосудистого некроза саженцев винограда в Анапо-Таманской зоне Краснодарского края 2011 год, кандидат биологических наук Лукьянова, Анна Александровна

  • Приемы формирования и обрезки кустов винограда на богарных и орошаемых маточниках привойных лоз южной степи УССР 1984 год, кандидат сельскохозяйственных наук Микитенко, Сергей Васильевич

  • Научные основы адаптивного виноградарства Чеченской Республики 2001 год, доктор сельскохозяйственных наук Зармаев, Али Алхазурович

Введение диссертации (часть автореферата) на тему «Стимуляция корнеобразования черенков винограда электрическим током»

В настоящее время выращиванием товарного винограда в Российской Федерации занимаются 195 специализированных виноградарских хозяйств, в 97 из которых имеются заводы по первичной переработке винограда.

Разнообразие почвенно-климатических условий выращивания винограда в России позволяет производить широкую гамму сухих, десертных, крепких и игристых вин, высококачественные коньяки.

Кроме того, виноделие следует рассматривать не только как средство производства алкогольной продукции, но и как основной источник финансирования развития виноградарства России, дающий потребительскому рынку столовые сорта винограда, виноградные соки, детское питание, сухие вина и другие экологически чистые продукты, жизненно необходимые населению страны (достаточно вспомнить Чернобыль и поставку туда красных столовых вин - единственного продукта, выводящего из человеческого организма радиоактивные элементы).

Использование винограда в свежем виде в эти годы не превышало 13 тыс. т, то есть его потребление на душу населения равнялось 0,1 кг вместо 7 - 12 кг по медицинским нормам.

В 1996 году было недобрано более 100 тыс. т винограда из-за гибели насаждении от вредителей и болезней, недополучено около 8 млн. дал виноградного вина на общую сумму 560-600 млрд. руб. (на приобретение же средств защиты урожая требовалось всего 25-30 млрд. руб.). Виноградарям нет никакого смысла расширять насаждения ценных технических сортов, так как при существующем ценообразовании и налогах все это просто убыточно. У виноделов потерян смысл в приготовлении высокоценных вин, так как у населения нет свободных денег на покупку натуральных виноградных вин, а бесчисленные коммерческие ларьки завалены десятками сортов дешёвой, неизвестно кем и как приготовленной водки.

Стабилизация отрасли в настоящее время зависит решения проблем на федеральном уровне: нельзя допустить дальнейшего ее разрушения, необходимо укрепить производственную базу и улучшить финансовое стояние предприятий. Поэтому уже с 1997 года особое внимание уделяется мерам, направленным на сохранение существующих насаждений и их продуктивности за счёт проведения всех работ по уходу за виноградниками на высоком агротехническом уровне. Одновременно в хозяйствах постоянно проводятся замена низкорентабельных, потерявших хозяйственную ценность насаждений, сортообновление и улучшение их структуры.

Перспективы дальнейшего развития виноградарства нашей страны требуют резкого увеличения производства посадочного материала, как основного фактора, задерживающего освоение новых площадей под виноградники. Несмотря на применение ряда биологических и агротехнических мероприятий по увеличению выхода первосортных корнесобственных саженцев, до настоящего времени их выход в некоторых хозяйствах крайне низок, что сдерживает расширение площадей виноградников.

Выращивание корнесобственных саженцев является сложным биологическим процессом, зависящем как от внутренних, так и внешних факторов произрастания растения.

Современное состояние науки даёт возможность управлять этими факторами посредством разного рода стимуляторов, в том числе и электрических, с помощью которых оказывается возможным активно вмешиваться в жизненный процесс растения и ориентировать его в нужном направлении.

Исследованиями советских и зарубежных учёных, среди которых следует отметить работы В.И. Мичурина, A.M. Басова, И.И. Гунара, Б.Р. Ла-заренко, И.Ф. Бородина установлено, что электрофизические методы и способы воздействия на биологические объекты, в том числе и на растительные организмы, в ряде случаев дают не только количественные, но и качественные положительные результаты, не достижимые с помощью других методов.

Несмотря на большие перспективы применения электрофизических методов управления жизненными процессами растительных организмов, внедрение этих способов в растениеводстве задерживается, так как до сего времени ещё недостаточно изучены механизм стимуляции и вопросы расчёта и конструирования соответствующих электроустановок.

В связи с вышесказанным разрабатываемая тема является весьма актуальной для виноградного питомниководетва.

Научная новизна проведённой работы заключается в следующем: выявлена зависимость плотности тока, протекающего по черенку винограда как объекту электрообработки, от напряжённости электрического поля и экспозиции. Установлены режимы электрообработки (напряжённость электрического поля, экспозиция), соответствующие минимальным затратам энергии. Обоснованы параметры электродных систем и источника питания для электростимуляции черенков винограда.

Основные положения, которые выносятся на защиту:

1. Обработка виноградных черенков электрическим током стимулирует корнеобразование, за счёт чего на 12 % увеличивается выход из школки стандартных саженцев.

2. Электростимуляцию виноградных черенков следует проводить переменным током промышленной частоты (50 гц) с подводом электроэнергии к ним через токоподводяшую жидкость. 8

3. Максимальный коэффициент полезного действия при электростимуляции виноградных черенков с подводом электроэнергии к ним через токоподводящую жидкость достигается при соотношении объёма жидкости к суммарному объёму обрабатываемых черенков как 1:2; при этом соотношение между удельными сопротивлениями токоподводящей жидкости и обрабатываемых черенков должно находится в пределе от 2 до 3.

4. Электростимуляция виноградных черенков должна производится при напряжённости электрического поля 14 В/м и экспозиции обработки 24 часа.

Похожие диссертационные работы по специальности «Электротехнологии и электрооборудование в сельском хозяйстве», 05.20.02 шифр ВАК

  • 1999 год, кандидат сельскохозяйственных наук Козаченко, Дмитрий Михайлович

  • Совершенствование приемов активизации корнеобразования у подвоев и сортов винограда при производстве саженцев 2009 год, кандидат сельскохозяйственных наук Никольский, Максим Алексеевич

  • 2007 год, кандидат сельскохозяйственных наук Малых, Павел Григорьевич

  • Научное обоснование методов улучшения качества продукции виноградарства в условиях юга России 2013 год, доктор сельскохозяйственных наук Панкин, Михаил Иванович

  • Совершенствование технологии ускоренного размножения интродуцированных сортов винограда в условиях Нижнего Придонья 2006 год, кандидат сельскохозяйственных наук Габибова, Елена Николаевна

Заключение диссертации по теме «Электротехнологии и электрооборудование в сельском хозяйстве», Кудряков, Александр Георгиевич

105 ВЫВОДЫ

1. Исследованиями и производственными испытаниями установлено, что предпосадачная электростимуляция черенков винограда улучшает кор-необразование черенков, что способствует более высокому выходу стандартных саженцев из школки.

2. Для осуществления электростимуляции черенков винограда целесообразно применять переменный ток частотой 50 Гц, подводя его к черенкам через токоподводящую жидкость.

3. Обоснованы оптимальные режимные параметры установки для электростимуляции черенков винограда. Напряжённость электрического поля в зоне обработки составляет 14 В/м, экспозиция обработки - 24 часа.

4. Производственные испытания, проведённые в АОЗТ "Родина" Крымского района показали, что разработанная установка работоспособна и позволяет повысить выход стандартных саженцев на 12%.

5. Экономический эффект от применения установки для электростимуляции корнеобразования черенков винограда составляет 68,5 тыс. рублей с 1 га.

Список литературы диссертационного исследования кандидат технических наук Кудряков, Александр Георгиевич, 1999 год

1. A.C. 1135457 (СССР). Устройство для стимулирования прививок электрическим током. С.Ю. Дженеев, A.A. Лучинкин, А.Н. Сербаев. Опубл. в Б. И., 1985, №3.

2. A.C. 1407447 (СССР). Устройство для стимуляции развития и роста растений. Пятницкий И.И. Опубл. в Б. И. 1988, № 25.

3. A.C. 1665952 (СССР). Способ выращивания растений.

4. A.C. 348177 (СССР). Устройство для стимуляции черенкового материала. Северский Б.С. Опубл. в Б. И. 1972, № 25.

5. A.C. 401302 (СССР). Устройство для прореживания растений./ Б.М. Скороход, A.C. Кащурко. Опубл. в Б. И, 1973, № 41.

6. A.C. 697096 (СССР). Способ стимулирования прививок. A.A. Лучинкин, С.Ю. Джанеев, М.И. Таукчи. Опубл. в Б. И., 1979, № 42.

7. A.C. 869680 (СССР). Способ обработки виноградных прививок./ Жген-ти Т.Г., Когорашвили B.C., Нишнианидзе К.А., Бабиашвили Ш.Л., Хо-мерики Р.В., Якобашвили В.В., Датуашвили В.Л. Опубл. в Б. И., 1981, №37.

8. A.C. 971167 СССР. Способ кильчевания виноградных черенков / Л.М. Малтабар, П.П. Радчевский. опубл. 07.11.82. // Открытия, изобретения, промышленные образцы, товарные знаки. - 1982. - № 41.

9. A.C. 171217 (СССР). Устройство для стимуляции черенкового материала. Кучава Г.Д. и др.

10. Ю.Алкиперов P.A. Применение электричества для борьбы с сорняками. -В кн.: труды Туркменского с. х. института. Ашхабад, 1975, вып. 18, №1, с. 46-51.11 .Ампелография СССР: Отечественные сорта винограда. М.: Лёг. и пищ. пром-сть, 1984.

11. Баев В.И. Оптимальные параметры и режимы работы разрядного контура при электроискровой предуборочной обработке подсолнечника. -Дисс. . канд. техн. наук. Волгоград, 1970. - 220 с.

12. Баран А.Н. К вопросу о механизме воздействия электрического тока на процесс электротермохимической обработки. В кн.: Вопросы механизации и электрификации с. х.: Тезисы докладов Всесоюзной школы учёных и специалистов. Минск, 1981, с. 176- 177.

13. Басов A.M. и др. Влияние электрического поля на корнеобразование у черенков. Сад и огород. 1959. № 2.

14. Басов A.M. и др. Стимуляция прививок яблони электрическим полем. Труды ЧИМЭСХ, Челябинск, 1963, вып. 15.

15. Басов A.M., Быков В.Г., и др. Электротехнология. М.: Агропромиз-дат,1985.

16. Басов A.M., Изаков Ф.Я. и др. Электрозерноочистительные машины (теория, конструкция, расчёт). М.: Машиностроение, 1968.

17. Батыгин Н.Ф., Потапова С.М. и др. Перспективы использования факторов воздействия в растиниеводстве. М.: 1978.

18. Беженарь Г.С. Исследование процесса электрообработки массы растений переменным током на косилках плющилках. Дисс. . канд. техн. наук. - Киев, 1980. - 206 с.

19. Блонская А.П., Окулова В.А. Предпосевная обработка семян сельскохозяйственных культур в электрическом поле постоянного тока в сравнении с другими физическими методами воздействия. Э.О.М., 1982, № 3.

20. Бойко A.A. Интенсификация механического обезвоживания зеленой массы. Механизация и электрификация соц. сел. хозяйства, 1995, № 12, с. 38-39.

21. Болгарев П.Т. Виноградарство. Симферополь, Крымиздат, 1960.

22. Бурлакова Е.В. и др. Малый практикум по биофизике. М.: Высшая школа, 1964.-408 с.

23. Виноградное питомниководство Молдавии. К., 1979.

24. Воднев В.Т., Наумович А.Ф., Наумович Н.Ф. Основные математические формулы. Минск, Вышэйшая школа, 1995.

25. Войтович К.А. Новые комплексно-устойчивые сорта винограда и методы их получения. Кишинёв: Картя Молдовеняске, 1981.

26. Гайдук В.Н. Исследование электротепловых свойств соломенной резки и расчёт электродных запарников: Автореф. дисс. . канд. техн. наук. -Киев, 1959, 17 с.

27. Гартман Х.Т., Кестер Д.Е. Размножение садовых растений. М.: 1963.

28. Гасюк Г.Н.,Матов Б.М. Обработка винограда электрическим током повышенной частоты перед прессованием. Консервная и овощесушильная промышленность, 1960, № 1, с. 9 11.31 .Голинкевич Г.А. Прикладная теория надёжности. М.: Высшая школа, 1977.- 160 с.

29. Грабовский Р.И. Курс физики. М.: Высшая школа, 1974.

30. Гузун Н.И. Новые сорта винограда Молдавии. Листок / МСХ СССР. -Москва: Колос, 1980.

31. Гунар И.И. Проблема раздражимости растений и дальнейшее развитие физиологии растений. Извест. Тимирязевской с. х. академии, вып. 2, 1953.

32. Дудник H.A., Щигловская В.И. Ультразвук в виноградном питомнико-водстве. В сб.: Виноградарство. - Одесса: Одесск. с. - х. ин-т, 1973, с. 138- 144.

33. Живописцев E.H. Электротехнология в сельскохозяйственном производстве. М.: ВНИИТЭИСХ, 1978.

34. Живописцев E.H., Косицин O.A. Электротехнология и электроосвещение. М.: ВО Агропромиздат, 1990.

35. Заявка № 2644976 (Франция). Способ стимулирования роста растений и/или деревьев и постоянные магниты для их осуществления.

36. Заявка № 920220 (Япония). Способ повышения продуктивности растительного и животного мира. Хаясихара Такэси.

37. Калинин Р.Ф. Повышение выхода черенков винограда и активация образования каллуса при прививке. В сб.: Уровни организации процессов у растений. - Киев: Наукова думка, 1981.

38. Каляцкий И.И., Синебрюхов А.Г. Энергетические характеристики канала искрового разряда импульсного пробоя различных диэлектрических сред. Э.О.М.,1966, № 4, с. 14 - 16.

39. Карпов Р.Г., Карпов Н.Р. Элктрорадиоизмерения. М.: Высшая школа, 1978.-272 с.

40. Киселёва P.A. Янтарная кислота как стимулятор роста привитых саженцев винограда. Агрономия, 1976, №5, с.133 - 134.

41. Коберидзе A.B. Выход в питомнике прививок виноградной лозы, обработанных стимуляторами роста. В сб.: Рост растений, Львов: Львовск. ун-т, 1959, с. 211-214.

42. Колесник JI.B. Виноградарство. К., 1968.

43. Кострикин И.А. Ещё раз о питомниководетве. "Виноград и вино России", №1, 1999, с. 10-11.

44. Кравцов A.B. Электрические измерения. М. ВО Агропромиздат, 1988. - 240 с.

45. Кудряков А.Г, Перекотий Г.П. Поиск оптимальных энергетических характеристик электрической цепи обработки черенков винограда. .// Вопросы электрификации сельского хозяйства. (Тр./Куб. ГАУ; Вып. 370 (298). - Краснодар, 1998.

46. Кудряков А.Г, Перекотий Г.П. Электростимуляция корнеобразования виноградных черенков.// Новое в электротехнологии и электрооборудовании сельскохозяйственного производства. - (Тр./Куб. ГАУ; Вып. 354 (382). Краснодар, 1996. - с. 18 - 24.

47. Куликова Т.И., Касаткин H.A., Данилов Ю.П. О возможности использования импульсного напряжения для предпосадочной электростимуляции картофеля. Э.О.М., 1989,№ 5, с. 62 63.

48. Лазаренко Б.Р. Интенсификация процесса извлечения сока электрическими импульсами. Консервная и овощесушильная промышленность, 1968, № 8, с. 9 - 11.

49. Лазаренко Б.Р., Решетько Э.В. Исследование влияния электрических импульсов на сокоотдачу растительного сырья. Э.О.М., 1968, № 5, с. 85-91.

50. Луткова И.Н., Олешко П.М., Быченко Д.М. Влияние токов высокого напряжения на укоренение черенков винограда. В и ВСССРД962, № 3.

51. Лучинкин A.A. О стимулирующем действии электрического тока на виноградные прививки. УСХА. Научные труды. Киев, 1980, вып. 247.

52. Макаров В.Н. и др. О влиянии СВЧ-облучения на рост плодовоягодных культур. ЭОМ. № 4. 1986.

53. Малтабар JI.M., Радчевский П.П. Руководство по производству прививок винограда на месте, Краснодар, 1989.

54. Малтабар Л.М., Радчевский П.П., Кострикин И.А. Ускоренное создание маточников интенсивного и суперинтенсивного типа. Виноделие и виноградарство СССР. 1987. - №2.

55. Малых Г.П. Состояние и перспективы развития питомниководства в России. "Виноград и вино России", №1, 1999, с. 8 10.

56. Мартыненко ИИ. Проектирование, монтаж и эксплуатация систем автоматики. М.: Колос. 1981. - 304 с.

57. Матов Б.М., Решетько Э.В. Электрофизические методы в пищевой промышленности. Кишинёв.: Картя Молдавеняскэ,1968, - 126 с.

58. Мельник С.А. Производство виноградного посадочного материала. -Кишинев: Госиздат Молдавии, 1948.

59. Мержаниан A.C. Виноградарство: 3-е изд. М., 1968.

60. Мичурин И.В. Избранные сочинения. М.: Сельхозгиз,1955.

61. Мишуренко А.Г. Виноградный питомник. 3-е изд. - М., 1977.

62. Павлов И.В. и др. Электрофизические методы предпосевной обработки семян. Механиз. и электрификация с. х. 1983. № 12.

63. Панченко А.Я., Щеглов ЮА. Электрическая обработка свекловичной стружки переменным электрическим током. Э.О.М., 1981,№ 5, с. 76 -80.

64. Пелих М.А. Справочник виноградаря. 2-е изд. - М., 1982.

65. Перекотий Г. П., Кудряков А. Г., Хамула А. А. К вопросу о механизме воздействия электрического тока на растительные объекты.// Вопросы электрификации сельского хозяйства. (Тр./Куб. ГАУ; Вып. 370 (298). -Краснодар, 1998.

66. Перекотий Г.П. Исследование процесса предуборочной обработки растений табака электрическим током. Дис. . канд. техн. наук. - Киев, 1982.

67. Перекотий Г.П., Кудряков А.Г. Винников A.B. и др. О механизме воздействия электрического тока на растительные объекты.// Научное обеспечение АПК Кубани. (Тр./Куб. ГАУ; Вып. 357 (385). - Краснодар, 1997.-с. 145- 147.

68. Перекотий Г.П., Кудряков А.Г. Исследование энергетических характеристик цепи электрообработки черенков винограда.// Энергосберегающие технологии и процессы в АПК (тезисы докладов научной конференции по итогам 1998 г.). КГАУ, Краснодар, 1999.

69. Пилюгина В.В. Электротехнологические способы стимуляции укоренения черенков, ВНИИЭСХ, НТБ по электрификации с. х., вып. 2 (46), Москва, 1982.

70. Пилюгина В.В., Регуш A.B. Электромагнитная стимуляция в растениеводстве. М.: ВНИИТЭИСХ, 1980.

71. Писаревский В.Н. и др. Электроимпульсное стимулирование семян кукурузы. ЭОМ. № 4, 1985.

72. Потебня A.A. Руководство по виноградарству. СПб, 1906.

73. Производство винограда и вина в России и перспективы его развития. "Виноград и вино России", №6, 1997, с. 2 5.

74. Радчевский П.П. Способ электрокильчевания виноградных черенков. Информ. Листок №603-85, Ростов, ЦНТИД985.

75. Радчевский П.П., Трошин Л.П. Методическое пособие по изучению сортов винограда. Краснодар, 1995.

76. Решетько Э.В. Использование электроплазмолиза. Механизация и электрификация соц. с. х., 1977, № 12, с. 11 - 13.

77. Савчук В.Н. Исследование электрической искры как рабочего органа предуборочной обработки подсолнечника. Дис. . канд. техн. наук. -Волгоград, 1970, - 215 с.

78. Саркисова М.М. Значение регуляторов роста в процессе вегетативного размножения, роста и плодоношения виноградной лозы и плодовых растений.: Автореф. дис. . доктора биолог, наук. Ереван, 1973- 45 с.

79. Свиталка Г.И. Исследование и выбор оптимальных параметров электроискрового прореживания всходов сахарной свеклы: Автореф. дис. . канд. техн. наук. Киев, 1975, - 25 с.

80. Серёгина М.Т. Электрическое поле как фактор воздействия обеспечивающий снятие периода покоя и активизацию ростовых процессов у растений лука репчатого на П3 этапе органогенеза. ЭОМ, № 4, 1983.

81. Серёгина М.Т. Эффективность использования физических факторов при предпосадочной обработке клубней картофеля. ЭОМ., № 1, 1988.

82. Соколовский A.B. Разработка и исследование основных элементов агрегата для предуборочной электроискровой обработки подсолнечника. Дис. . канд. техн. наук. - Волгоград, 1975, - 190 с.

83. Сорочану Н.С. Исследование электроплазмолиза растительных материалов с целью интенсификации процесса их сушки: Автореф. дис. . канд. техн. наук. Челябинск, 1979, - 21 с.

84. Тавадзе П.Г. Влияние стимуляторов роста на выход первосортных прививок у виноградной лозы. Докл. АН УССР, сер. Биол. науки, 1950, №5, с. 953-955.

85. Тарьян И. Физика для врачей и биологов. Будапешт, Медицинский университет, 1969.

86. Тихвинский И.Н., Кайсын Ф.В., Ланда Л.С. Влияние электрического тока на процессы регенерации черенков винограда. СВ и ВМ, 1975, № 3

87. Трошин Л.П., Свириденко H.A. Устойчивые сорта винограда: Справ, изд. Симферополь: Таврия, 1988.

88. Турецкая Р.Х. Физиология корнеобразования у черенков и стимуляторы роста. М.: Изд-во АН СССР, 1961.

89. Тутаюк В.Х. Анатомия и морфология растений. М.: Высшая школа, 1980.

90. Фоэкс Г. Полный курс виноградарства. СПб, 1904.

91. Фурсов С.П., Бордиян В.В. Некоторые особенности электроплазмолиза растительной ткани при повышенной частоте. Э.О.М., 1974, № 6, с. 70 -73.

92. Чайлахян М.Х., Саркисова М.М. Регуляторы роста у виноградной лозы и плодовых культур. Ереван: Изд-во АН Арм.ССР, 1980.

93. Червяков Д.М. Исследование электрического и механического воздействия на интенсивность сушки травы: Автореф. дис. . канд. техн. наук. -Челябинск, 1978, 17 с.

94. Шерер В.А., Гадиев Р.Ш. Применение регуляторов роста в виноградарстве и питомниководстве. Киев: Урожай, 1991.

95. Энциклопедия виноградарства в 3 т., том 1. Кишинёв, 1986.

96. Энциклопедия виноградарства в 3 т., том 2. Кишинёв, 1986.

97. Энциклопедия виноградарства в 3 т., том 3. Кишинёв, 1987.

98. Пупко В.Б. Реакщя виноградно1 лози на дно електромагштного поля. В зб.: Виноградарство i виноробство. - Киев: Урожай, 1974,№ 17.

99. Aktivace prerozenych elektickych proudu typu geo-fyto u sazenic revy virnie. Zahradnicfvi, 1986, 13.

100. Bobiloff W., Stekken van Hevea braziliensis, Meded. Alg. Proefst. Avros. Rubberserie, 94,123 126, 1934.

101. Christensen E., Root production in plants following localized stem irradiation, Science,119, 127-128, 1954.

102. Hunter R. E. The vegetative propagation of citrus, Trop. Agr., 9, 135 - 140, 1932.

103. Thakurta A. G., Dutt В. K. Vegetative propagation on mango from gootes (marcotte) and cuttings by treatment of high concentration auxin, Cur. Sci., 10, 297, 1941.

104. Seeliger R. Der neue Wienbau Crundlangen des Anbaues von Pfropfreben. -Berlin, 1933.-74p.рЩ^УТВЕРЖДАЮр по научной работе о ГАУ, профессор Ю.Д. Северин ^1999г.116

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Электризация почвы и урожай

В целях повышения продуктивности сельскохозяйственных растений человечество с давних пор обращается к почве. То, что электричество может повысить плодородие верхнего пахотного слоя земли, то есть усилить его способность формировать большой урожай, опытами учёных и практиков уже доказано давно. Но как это сделать лучше, как увязать электризацию почвы с существующими технологиями её обработки? Вот те проблемы, которые не решены до конца и сейчас. При этом нельзя забывать, что почва - объект биологический. И при неумелом вмешательстве в этот сложившийся организм, особенно столь мощным средством, каким является электричество, можно нанести ему непоправимый ущерб.

При электризации почвы видят, прежде всего, способ влияния на корневую систему растений. К настоящему времени накоплено много данных, показывающих, что слабый электрический ток, пропущенный через почву, стимулирует в растениях ростовые процессы. Но результат ли это прямого действия электричества на корневую систему, и через неё и на все растение, или итог физико-химических изменений в почве? Определённый шаг к пониманию проблемы сделали в свое время ленинградские учёные.

Проведенные ими опыты были весьма изощрёнными, ведь предстояло выяснить глубоко спрятанную истину. Брали небольшие полиэтиленовые трубки-камеры с отверстиями, в которые высаживали проростки кукурузы. Трубки заполняли питательным раствором с полным набором необходимых проросткам химических элементов. И через него с помощью инертных в химическом отношении платиновых электродов пропускали постоянный электрический ток величиной 5-7 мкА/кв. см. Объём раствора в камерах поддерживали на одном уровне, добавляя дистиллированную воду. Воздух, а он крайне нужен корням, систематически подавали (в виде пузырьков) из специальной газокамеры. За составом питательного раствора непрерывно следили датчики того или иного элемента - ионоселективные электроды. И по зарегистрированным изменениям делали вывод, что и в каком количестве поглощено корнями. Все другие каналы утечки химических элементов были перекрыты. Параллельно работал контрольный вариант, в котором всё было абсолютно таким же, за исключением одного - через раствор электрический ток не пропускали. И что же?

Не прошло и 3 часов с начала эксперимента, а разница между контрольным и электрическим вариантами уже выявилась. В последнем элементы питания поглощались корнями активнее. Но, возможно, дело не в корнях, а в ионах, которые под действием внешнего тока стали быстрее передвигаться в растворе? Для ответа на этот вопрос в одном из опытов предусмотрели измерение биопотенциалов проростков и в определённое время включали в «работу» гормоны роста. Почему? Да потому, что они без всякой дополнительной электростимуляции изменяют активность поглощения корнями ионов и биоэлектрическую характеристику растений.

По окончанию эксперимента авторами были сделаны следующие выводы: «Пропускание слабого электрического тока через питательный раствор, в который погружена корневая система проростков кукурузы, оказывает стимулирующее действие на поглощение растениями ионов калия и нитратного азота из питательного раствора». Значит, всё-таки электричество стимулирует деятельность корневой системы? Но как, через какие механизмы? Для полной убедительности в корневом эффекте электричества поставили ещё один опыт, в котором также был питательный раствор, были корни, теперь уже огурцов, измеряли также биопотенциалы. И в этом эксперименте работа корневой системы при электростимуляции улучшалась. Однако до разгадки путей её действия ещё далеко, хотя уже познано, что электрический ток оказывает на растение как прямое, так и косвенное воздействие, степень влияния которых определяется целым рядом факторов.

Тем временем исследования эффективности электризации почвы расширялись и углублялись. Сегодня их, как правило, проводят в теплицах или в условиях вегетационных опытов. Это и понятно, поскольку только так можно уйти от ошибок, которые невольно допускаются тогда, когда эксперименты ставились в полевых условиях, в которых невозможно наладить контроль за каждым отдельным фактором.

Весьма обстоятельные опыты с электризацией почвы в своё время в Ленинграде провёл научный работник В. А. Шустов. В слабо подзолистую суглинистую почву он добавил 30% перегноя и 10% песка и через эту массу перпендикулярно корневой системе между двумя стальными или угольными электродами (лучше себя показали последние) пропускал ток промышленной частоты плотностью 0,5 мА/кв. см. Урожай редиса вырос на 40-50%. А вот постоянный ток такой же плотности снизил сбор этих корнеплодов по сравнению с контролем. И лишь понижение его плотности до 0,01-0,13 мА/кв. см вызвало повышение урожая до уровня, полученного при использовании переменного тока. В чём тут причина?

Используя меченый фосфор, установили, что переменный ток выше указанных параметров благотворно влияет на поглощение растениями этого важного электрического элемента. Проявилось также и положительное действие постоянного тока. При его плотности 0,01 мА/кв. см получен урожай примерно равный тому, что был получен при применении переменного тока плотностью 0,5 мА/ кв. см. Кстати, из четырех испытываемых частот переменного тока (25, 50, 100 и 200 Гц) лучшей оказалась частота в 50 Гц. Если же растения прикрывали заземлёнными экранирующими сетками, то урожай овощных культур значительно снижался.

В Армянской НИИ механизации и электрификации сельского хозяйства применяли электричество для стимуляции растений табака. Изучали широкий спектр плотностей тока, пропускаемого в поперечном сечении корнеобитаемого слоя. У переменного тока он был 0,1; 0,5; 1,0; 1,6; 2,0; 2,5; 3,2 и 4,0 а/кв. м, у постоянного - 0,005; 0,01; 0,03; 0,05; 0,075; 0,1; 0,125 и 0,15 а/кв. м. В качестве питательного субстрата использовали смесь, состоящую на 50% из чернозёма, на 25% из перегноя и на 25% из песка. Наиболее оптимальными оказались плотности тока 2,5 а/кв. м для переменного и 0,1 а/кв. м для постоянного при непрерывной подаче электричества в течение полутора месяцев. При этом выход сухой массы табака в первом случае превышал контроль на 20, а во втором - на 36%.

Или вот томаты. Экспериментаторы создавали в их корнеобитаемой зоне постоянное электрическое поле. Растения развивались намного быстрее контрольных, особенно в фазу бутонизации. У них была больше площадь листовой поверхности, повысилась активность фермента пероксидазы, усиливалось дыхание. В результате прибавка урожая составила 52%, и произошло это в основном за счёт увеличения размеров плодов и их количества на одном растении.

Постоянный ток, пропускаемый через почву, благотворно влияет и на плодовые деревья. Это подметил ещё И. В. Мичурин и успешно применял его ближайший помощник И. С. Горшков, который в своей книге «Статьи по плодоводству» (Москва, Изд. Сельск. литер., 1958 г.) посвятил данному вопросу целую главу. В указанном случае плодовые деревья быстрее проходят детский (учёные говорят «ювенильный») этап развития, повышается их холодостойкость и устойчивость к другим неблагоприятным факторам среды, в итоге увеличивается урожайность. Чтобы не быть голословным, приведу конкретный пример. Когда через почву, на которой росли молодые хвойные и лиственные деревья, непрерывно в течение светлого периода суток пропускали постоянный ток, в их жизни происходил целый ряд примечательных явлений. В июне-июле опытные деревья отличались более интенсивным фотосинтезом, что явилось результатом стимулирования электричеством роста биологической активности почвы, повышения скорости движения почвенных ионов, лучшего поглощения их корневыми системами растений. Более того, ток, протекающий в почве, создавал большую разность потенциалов между растениями и атмосферой. А это, как уже говорилось, фактор сам по себе благоприятный для деревьев, особенно молодых. В следующем опыте, проведённом под плёночным укрытием, при непрерывном пропускании постоянного тока фитомасса однолетних сеянцев сосны и лиственницы увеличилась на 40-42%. Если бы такой темп прироста сохранить в течение нескольких лет, то нетрудно представить, какой огромной выгодой бы это обернулось.

Интересный опыт по влиянию электрического поля между растениями и атмосферой провели учёные Института физиологии растений АН СССР. Они установили, что фотосинтез идёт тем быстрее, чем больше разность потенциалов между растениями и атмосферой. Так, например, если около растения держать отрицательный электрод и постепенно увеличивать напряжение (500, 1000, 1500, 2500 В), то интенсивность фотосинтеза будет возрастать. Если же потенциалы растения и атмосферы близки, то растение перестает поглощать углекислый газ.

Нужно отметить, что опытов по электризации почвы проведено очень много, как у нас, так и за рубежом. Установлено, что это воздействие изменяет передвижение различных видов почвенной влаги, способствует размножению ряда трудноусвояемых для растений веществ, провоцирует самые разнообразные химические реакции, в свою очередь изменяющие реакцию почвенного раствора. При электровоздействии на почву слабыми токами в ней лучше развиваются микроорганизмы. Определены и параметры электрического тока, оптимальные для разнообразных почв: от 0,02 до 0,6 мА/кв. см для постоянного тока и от 0,25 до 0,5 мА/кв. см для переменного тока. Однако на практике ток указанных параметров даже на аналогичных почвах может и не дать прибавки урожая. Это объясняется тем многообразием факторов, которые возникают при взаимодействии электричества с почвой и возделываемыми на ней растениями. В почве, принадлежащей к одной и той же классификационной категории, в каждом конкретном случае могут быть совершенно различные концентрации водорода, кальция, калия, фосфора, других элементов, могут быть несхожие условия аэрации, а, следовательно, и прохождение собственных окислительно-восстановительных процессов и т.д. Наконец, не надо забывать о постоянно изменяющихся параметрах атмосферного электричества и земного магнетизма. Многое также зависит от применяемых электродов и способ электровоздействия (постоянное, кратковременное и т.д.). Короче говоря, надо в каждом конкретном случае пробовать и подбирать, пробовать и подбирать...

Вследствие этих и ряда других причин электризация почвы, хотя и способствует повышению урожайности сельскохозяйственных растений, и нередко довольно значительному, но широкого практического применения пока ещё не приобрела. Понимая это, учёные ищут новые подходы к данной проблеме. Так, предложена обработка почвы электрическим разрядом для фиксации в ней азота - одного из главных «блюд» для растений. Для этого в почве и в атмосфере создают высоковольтный маломощный непрерывный дуговой разряд переменного тока. И там, где он «работает», часть атмосферного азота переходит в нитратные формы, усвояемые растениями. Однако происходит это, конечно, на небольшом участке поля и достаточно затратно.

Более эффективен другой способ увеличения количества усвояемых форм азота в почве. Он заключается в применение кистевого электрического разряда, создаваемого непосредственно в пахотном слое. Кистевой разряд - это одна из форм газового разряда, возникающая при атмосферном давлении на металлическом остриё, к которому подведён высокий потенциал. Величина потенциала зависит от положения другого электрода и от радиуса кривизны острия. Но в любом случае он должен измеряться десятком киловольт. Тогда на кончике острия возникает кистеобразный пучок перемежающихся и быстро смешивающихся электрических искр. Такой разряд вызывает образование в почве большого количества каналов, в которые проходит значительное количество энергии и, как показали лабораторные и полевые эксперименты, способствует увеличению в почве усвояемых растениями форм азота и, как следствие, повышению урожая.

Ещё более эффективно использование при обработке почвы электрогидравлического эффекта, заключающегося в создании электрического разряда (электрической молнии) в воде. Если поместить в сосуд с водой порцию почвы и произвести в этом сосуде электрический разряд, то произойдёт дробление частиц почвы с высвобождением большого количества необходимых для растений элементов и связывание атмосферного азота. Такое воздействие электричества на свойства почвы и на воду очень благотворно сказывается на росте растений и их урожайности. Учитывая большую перспективу этого способа электризации почвы, я попробую рассказать о нем более подробно в отдельной статье.

Весьма любопытен другой способ электризации почвы - без внешнего источника тока. Это направление развивает кировоградский исследователь И. П. Иванько. Он рассматривает почвенную влагу как своеобразный электролит, находящийся под воздействием электромагнитного поля Земли. На границе раздела металл-электролит, в данном случае металлопочвенный раствор, возникает гальвано-электрический эффект. В частности, при нахождении в почве стального провода на его поверхности в результате окислительно-восстановительных реакций образуются катодные и анодные зоны, происходит постепенное растворение металла. В итоге на межфазных границах возникает разность потенциалов, достигающая 40-50 мВ. Образуется она и между двумя проводами, уложенными в почве. Если провода находятся, например, на расстоянии 4 м, то разность потенциалов составляет 20-40 мВ, но сильно изменяется в зависимости от влажности и температуры почвы, её механического состава, количества удобрений и других факторов.

Электродвижущую силу между двумя проводами в почве автор назвал «агро-ЭДС», ему удалось не только её измерить, но и объяснить общие закономерности, по которым она образуется. Характерно, что в определённые периоды, как правило, при смене фаз Луны и изменении погоды, стрелка гальванометра, при помощи которого замеряют возникающий между проводами ток, резко меняет положение - сказывается сопровождающие подобные явления перемены в состоянии электромагнитного поля Земли, передающиеся почвенному «электролиту».

Исходя из этих представлений, автор предложил создавать электролизуемые агрономические поля. Для чего специальный тракторный агрегат щелевателем-проводоукладчиком распределяет сматываемый с барабана стальной провод диаметром 2,5 мм по дну щели на глубину 37 см. Пройдя гон, тракторист включает гидросистему на подъём, рабочий орган выглубляется из почвы, а провод обрубается на высоте 25 см от поверхности почвы. Через 12 м по ширине поля операция повторяется. Заметим, что размещенная таким образом проволока не мешает проведению обычных агротехнических работ. Ну, а если потребуется, то стальные проводки легко удалить из почвы при помощи узла размотки и намотки мерной проволоки.

Экспериментами установлено, что при таком способе на электродах наводится «агро-ЭДС» величиной 23-35 мВ. Поскольку электроды имеют разную полярность, между ними через влажную почву возникает замкнутая электрическая цепь, по которой течёт постоянный ток плотностью от 4 до 6 мкА/кв. см анода. Проходя через почвенный раствор как через электролит, этот ток поддерживает в плодородном слое процессы электрофореза и электролиза, благодаря чему необходимые растениям химические вещества почвы переходят из трудноусвояемых в легкоусвояемые формы. Кроме того, под воздействием электрического тока все растительные остатки, семена сорняков, отмершие животные организмы быстрее гумифицируются, что ведёт к росту плодородия почвы.

Как видно, в данном варианте электризация почвы возникает без искусственного источника энергии, лишь в результате действия электромагнитных сил нашей планеты.

Между тем за счёт этой «даровой» энергии в экспериментах получена весьма высокая прибавка урожая зерна - до 7 ц/га. Учитывая простоту, доступность и неплохую эффективность предложенной технологии электризации, садоводы-любители, заинтересовавшиеся этой технологией, могут прочесть о ней более подробно в статье И. П. Иванько «Использование энергии геомагнитных полей», опубликованной в журнале «Механизация и электрификация сельского хозяйства» № 7 за 1985 г. При внедрении указанной технологии автор советует располагать проволоки в направлении с севера на юг, а возделываемые над ними сельскохозяйственные растения с запада на восток.

Данной статьей я попытался заинтересовать садоводов-любителей в применении в процессе возделывания различных растений помимо известных технологий ухода за почвой электротехнологии. Относительная простота большинства способов электризации почвы, доступная для лиц, получивших знания по физике даже в объёме программы средней школы, делает возможным их применение и проверку практически на каждом садовом участке при выращивании овощей, плодовых и ягодных, цветочно-декоративных, лекарственных и других растений. Я тоже экспериментировал с электризацией почвы постоянным током в 60-е годы прошлого века при выращивании сеянцев и саженцев плодовых и ягодных культур. В большинстве опытов наблюдалась стимуляция роста, причем, иногда очень значительная, особенно при выращивании сеянцев вишни и сливы. Так что, уважаемые садоводы-любители, попробуйте проверить какой-нибудь способ электризации почвы в предстоящем сезоне на какой-либо культуре. А вдруг у вас всё получится хорошо, и всё это может оказаться одной из золотых жил?

В. Н. Шаламов



gastroguru © 2017