Защита бетона (железобетона) от коррозии. Антикоррозионная защита

Защита бетонных, а также каменных конструкций от коррозии заключается, с одной стороны, в снижении агрессивности среды, а с другой - в повышении стойкости конструкции, в устройстве защитных покрытий или в совместном применении этих мер. Защита железобетонных конструкций строится, кроме того, на подавлении коррозионных токов, возникающих в арматуре, или на дренаже блуждающих токов. Классификация методов защиты дана в табл. 9.1.

Снижение агрессивности среды. Агрессивное действие среды может быть уменьшено путем понижения уровня грунтовых вод или отвода их от сооружений.

Осушение производится посредством дренажа. Нередко в сооружениях приходится дополнительно устраивать дренаж для защиты их от воздействия агрессивных грунтовых вод и для осушения подвальных помещений. Дренаж может быть проложен за пределами сооружения или под его полом.

Снижение агрессивного действия грунтовых вод, загрязненных кислыми промышленными стоками или агрессивной С02 (составной частью нестойкой угольной кислоты), достигается прокладкой на их пути траншей, заполненных известняковым камнем. Агрессивное действие парогазовой среды внутри сооружений может быть уменьшено усиленной вентиляцией.

Повышение коррозионной стойкости поверхностного слоя конструкций. Оно достигается обработкой их поверхности торкретированием, гидрофобизацией, силикатизацией, флюатиро- ванием, карбонизацией.

Торкретирование состоит в нанесении защитного цементного слоя или активированного цемента на очищенную бетонную поверхность под давлением сжатого воздуха 5-6 ати. Смесь цемента и песка (в среднем 1:3) подготавливается заранее в растворомешалке или вручную. Активированный торкрет представляет собой смесь вибромолотах цемента и песка, песка и поверхностно-активных добавок. Сухая смесь по шлангу подается к соплу, где смачивается водой, а затем наносится на защищаемую поверхность.

Торкретирование производится обычно в два слоя. Для первого слоя (10-20 мм) рекомендуется портландцемент марки не ниже 300 и песок не крупнее 5 мм. Для второго слоя (10- 15 мм), наносимого через 24 ч, применяется более стойкий пуц- цолановый портландцемент марки 500 и песок не крупнее 2- 2,5 мм. В верхний слой торкрета для придания ему большей стойкости в агрессивной среде и гидрофобных свойств вводится раствор битума марки 3 или 4 в бензине второго сорта. На 1 кг цемента добавляется 300 г битумного раствора, приготавливаемого в пропеллерной мешалке путем растворения кускового битума в бензине.

Для ускорения схватывания и повышения антикоррозионных свойств защитного слоя в него вводится жидкое стекло. Правда, при этом он становится менее эластичным и более хрупким.

Создание непроницаемого слоя на поверхности прочных каменных материалов достигается полировкой, способствующей заполнению пор и пустот частицами камня, и последующим нанесением разогретых парафина, воска, олифы.

Гидрофобизация (придание способности не смачиваться водой) поверхностей кирпичных, бетонных и других конструкций имеет целью защиту их от атмосферных осадков в условиях повышенной влажности. Для гидрофобизации строительных конструкций используются следующие кремнийорганические полимерные материалы:

водная эмульсия ГКЖ-94, представляющая собой 50 %-ный раствор кремнийорганической жидкости ГКЖ-94, содержащей в качестве эмульгатора желатину;
раствор ГКЖ-94 в уайт-спирите или керосине; водный раствор ГКЖ-94, являющийся смесью кремнийорга- нических соединений.

Кремнийорганические материалы поступают готовыми к употреблению в виде жидкости ГКЖ-94 (100 %), водной эмульсии ГКЖ-94 (50 %) и водного раствора ГКЖ-Ю (20- 25%). Гидрофобный материал требуемой концентрации необходимо приготовить из исходной водной эмульсии на рабочем месте.

Для гидрофобизации конструкций указанные материалы наносят кистью или пульверизатором на сухую, предварительно очищенную поверхность из расчета на 1 м2 поверхности 250- 300 г 20 %-ной эмульсии, нанесенной в один слой.

Силикатизация поверхностного слоя состоит в нанесении на конструкцию (главным образом из естественных каменных материалов) жидкого стекла, а после его высыхания - раствора хлористого кальция; при этом происходит реакция Na2OSi02 + СаС12 = CaOSi02 + 2NaCl, (9.3) в результате которой образуются силикат кальция, заполняющий поры и повышающий стойкость конструкции, и соль, смываемая водой.

Флюатирование поверхности конструкций основано на взаимодействии свободной извести и растворов кремнефтористых солей легких металлов (магния, алюминия, цинка), которые, вступая в реакцию с углекислым кальцием, образуют нерастворимые продукты, оседающие в порах и уплотняющие конструкции.

Флюатирование бетонов начинается с нанесения на сухую очищенную поверхность раствора хлористого кальция, а затем флюагов. Флюаты наносятся кистью или распылителем в три слоя с повышением их концентрации: для первого - 2-3% по массе, для третьего - уже 12%. Каждый слой наносится после прекращения впитывания флюата с перерывами до 4 ч на его высыхание. После нанесения очередного слоя поверхность обрабатывается насыщенным раствором гидрата окиси кальция Са(ОН)2, приготавливаемым путем растворения извести в воде.

Поверхность бетона может обрабатываться также 3- 7%-ным раствором кремнефтористоводородной кислоты H2SiF6; при этом на поверхности образуется пленка фтористого кальция и кремнезема. Такая обработка повторяется несколько раз после высыхания каждого предыдущего слоя.

Расход флюата зависит от плотности и структуры обрабатываемого материала и составляет 150-300 г кристаллической соли на 1 м2 поверхности.

Карбонизация поверхностного слоя свежеприготовленного бетона состоит в превращении гидрата окиси кальция Са(ОН)2 под воздействием углекислого газа в карбонат кальция Са(СО)3, который более стоек к внешним воздействиям.

Устройство защитных покрытий. Одним из методов защиты конструкций является устройство или восстановление защитных покрытий: глиняной набивки, слоев обмазки, покраски, штукатурки КЦР, рулонного покрытия или слоя облицовки. Защита конструкций в этом случае основана на изоляции их от агрессивной среды, а потому покрытия должны быть водостойкими и водонепроницаемыми, а в особых случаях - и механически прочными. Чем агрессивнее среда, тем надежнее должна быть защита.

Особенность осуществления изоляции в агрессивной грунтовой среде, в отличие от обычной гидроизоляции, состоит в том, что она должна быть химически стойкой и наноситься обязательно с наружной стороны конструкции. Защита от воздействия внутренней агрессивной среды производится изнутри сооружения, при этом защищается вся толща конструкции.

В условиях эксплуатации необходимо зачастую восстанавливать защитные покрытия, предусмотренные проектом, в отдельных же случаях их устраивают вновь по специально разработанному проекту.

Штукатурная гидроизоляция коллоидным цементным раствором (КЦР) используется для противофильтрационной защиты подземных и подводных сооружений без ограничения величины действующего напора при работе гидроизоляции «на прижим» и напорах Р = 0,1 Па, при работе ее «на отрыв», а также при повышенной и постоянной влажности воздуха. Запрещается применение КЦР, если среда химически агрессивна по отношению к обычному портландцементу, а также при электрохимической агрессивности окружающей среды с блуждающими токами.

Коллоидный цементный раствор представляет собой высокодисперсную смесь вибромолотых цемента и песка, молотого песка и поверхностно-активных веществ. Он приготавливается в вибросмесителе, где производится двухчастотная обработка массы и одновременное перемешивание раствора в течение 5-6 мин.

Для гидроизоляции горизонтальных поверхностей рекомендуется КЦР, а для вертикальных - активированный торкрет (АТ). Это такой же КЦР, но смешение и нанесение его производятся цемент-пушкой, как обычного торкрета. В составе АТ увеличено содержание сульфитно-дрожжевой бражки до 2-2,5%.

Для устройства защитных покрытий пригодны и такие материалы, как эпоксидные смолы, цементно- и битумно-латексные композиции и др. Битум, являющийся отходом нефтепереработки и относительно дешевым материалом, широко используется для защитных покрытий. Соединяя битумы с каучуком, резиной, зеленым маслом и синтетическими смолами, можно повысить стойкость битумных покрытий в агрессивной среде.

Битумы применяются в разогретом (до 150-200 °С) виде смешанными с наполнителями, растворенными в маслах или углеводородах, а также в виде водорастворимых эмульсий или паст. Приготовление битумных растворов и эмульсий труднее, чем расплавов, но зато наносить их легче и безопаснее. Наиболее высокое качество таких покрытий достигается при правильном нанесении расплавленного битума, самое низкое - при нанесении битумных эмульсий.

Битумные покрытия в виде шпаклевок, плотных штукатурок и облицовок предназначены для защиты конструкций в сильноагрессивных атмосферных и агрессивных жидких средах без механических воздействий.

По мере повышения напора воды переходят к рулонной оклеечной изоляции и защите ее кирпичной стенкой. Так, при напоре до 800 мм устраивается двухслойный ковер, при 800- 1200 мм - трехслойный и защитная стенка в четверть или полкирпича, а при напоре более 1200 мм - четырехслойное покрытие. В ответственных сооружениях требуется листовая металлическая изоляция, которая, в свою очередь, защищается от воздействия агрессивной среды обмазками или электрохимическими методами.

Внутри зданий и сооружений для защиты конструкций от разрушения промышленными стоками и предотвращения проникновения их в грунт устраиваются кислотостойкие поддоны, отличающиеся тем, что собственно изоляция из битумной мастики или рулонного материала защищена от механических повреждений кислотостойкими плитками либо кирпичом.

Для защиты стен и покрытий от разрушения парообразной агрессивной средой применяются лаки и эмали, наиболее часто- битумно-смоляные эпоксидные эмали, ПХВ эмали и лаки, кремнийорганические эмали. Лакокрасочные покрытия легко наносятся и восстанавливаются, они экономичны. Из-за их высокой проницаемости они выполняются многослойными - от трех до восьми слоев, в зависимости от степени агрессивности среды.

При восстановлении или устройстве любого защитного покрытия особое внимание уделяется подготовке поверхности: она должна быть чистой, ровной (гладкой) и сухой; это в значительной мере предопределяет надежность и долговечность покрытия.

Повышение плотности и прочности конструкций нагнетанием в них растворов. Инъекция растворов в конструкции (о технологии и устройствах для нагнетания растворов см. гл. 13) с целью повышения их плотности и прочности может быть осуществлена цементацией (нагнетание цементного молока), силикатизацией (нагнетание жидкого стекла) и смоли- зацией (нагнетание синтетических смол).

Цементация заключается в нагнетании цементного раствора через пробуренные в конструкции отверстия, что увеличивает ее плотность и водонепроницаемость, а тем самым и коррозионную стойкость. Для цементации применяется раствор цемента и воды в пропорции 1:10. Чтобы ускорить его схватывание, в него вводят хлористый кальций - не более 7 % от массы цемента.

Повышение плотности и водонепроницаемости бетонных и железобетонных конструкций путем цементации, как показал опыт, недостаточно эффективно: фильтрация воды начинается очень быстро вновь; это объясняется грубодисперсным составом цементов, которые проникают в поры и трещины с раскрытием 0,2-0,1 мм, в то время как напорная вода фильтрует по каналам сечением 2-10~4 мм. Эффективность цементации может быть существенно повышена введением в раствор высокодисперсного магнитного вещества (подробнее см. гл. 13).

Силикатизация состоит в нагнетании через пробуренные в конструкциях отверстия (или иным способом) жидкого стекла, которое, проникая в пустоты и поры, заполняет их. Вводимый вслед за этим раствор хлористого кальция, реагируя с жидким стеклом, образует уплотняющий осадок из плохо растворимого гидросиликата кальция CaOSi02 2,5 Н20 и нерастворимого геля кремнезема Si02-«H20. Твердение гидросиликата и кремнезема завершается быстро -за четверо суток.

Смолизация мелкотрещиноватого, пористого бетона осуществляется путем нагнетания водного раствора карбамидной смолы, которая затвердевает при добавлении специально подобранного отвердителя, не агрессивного к бетону (например, щавелевой или кремнефтористоводородной кислоты). Смолизация предусматривает предварительное нагнетание в бетон 4 %-ного раствора щавелевой или кремнефтористоводородной кислоты (для локализации поверхностного слоя карбонатов кальция и гидрата окиси кальция созданием защитной пленки нерастворимого щавелевокислого кальция, препятствующего нейтрализации кислоты из раствора) и последующее введение раствора карбамидной смолы с отверждающей добавкой.

Смолизация - это тампонаж химических растворов - смолы и отвердителя; она рекомендуется для повышения плотности и водонепроницаемости конструкций с мелкими порами при отсутствии фильтрации воды (подробнее см. гл. 13).

При обследовании участков фильтрации определяется количество проникающей воды и величина трещин.

В зависимости от удельного водопоглощения опытным путем устанавливается ориентировочный расход материалов (смолы и кислоты) в расчете на 1 м скважины.

Зависимость между основными параметрами нагнетания растворов. Нагнетание растворов в конструкции - процесс очень сложный и трудоемкий, ибо при этом должны быть заполнены мельчайшие пустоты размером до 2- 10-4 см, по которым протекает вода, и до 10-5 см, по которым проникает воздух. Пустоты в бетонных конструкциях весьма разнообразны: они бывают переменного сечения, сквозными или тупиковыми, заполненными водой под напором или воздухом, и т. п.

Приступая к нагнетанию растворов, необходимо хотя бы приблизительно установить зависимости между основными параметрами нагнетания. Принимаем, что заполняются сквозные капилляры, по которым проходит воздух или вода. Гидроизоляция в расчете не учитывается.

Время нагнетания раствора Т зависит от его вязкости р, начального давления р0, толщины конструкции L, диаметра пустот г0. Расчетные значения параметров нагнетания определяют исходя из максимального наполнения капилляров, обеспечивающего надежную герметичность конструкции; они приведены в .

Расход маловязких материалов ориентировочно может быть определен по удельному водопоглощению. Практическая реализация всех этих вопросов рассмотрена в тринадцатой главе.

Тампонажные растворы с добавкой ферромагнитного порошка позволяют существенно сократить время уплотнения конструкции и расход раствора. Однако уплотнение конструкции при этом происходит только у поверхности - из герметика создается своеобразная пробка.

На основании изложенного можно заключить, что для защиты древесины от гниения и разрушения надо создавать вокруг эксплуатируемых конструкций такую температурно-влажностную среду, в которой не могли бы произрастать грибы. Если этого осуществить нельзя (не позволяет технологический или функциональный процесс либо иные условия), древесину конструкций необходимо обработать специальными ядохимикатами - антисептировать.

Каждому виду домового гриба присущи специфические признаки, своя окраска, те или иные формы развития грибницы (мицелия) и разрушения древесины. Все это составляет диагностические признаки грибов . Для определения вида гриба и степени поражения конструкции иногда может потребоваться специальное микроскопическое исследование образцов древесины в лаборатории.

Внешний вид древесины, пораженной настоящим домовым грибом, показан на рис. 10.1,6. Основным признаком появления домовых грибов (рис. 10.1, а) служит наличие гифов (нитей гриба) на древесине. На более поздней стадии поражения древесина буреет, темнеет, покрывается трещинами. К этому времени на пораженных ее участках вырастает грибница, имеющая обычно вид ваты белой или яркой окраски.

В зданиях дереворазрушающие грибы развиваются там, где возникают благоприятные для этого условия по температуре, влажности и скорости движения воздуха. Обычно это сырые темные непроветриваемые помещения или их части: подполья на сыром грунте и необитаемые подвалы; неантисептированные концы балок в каменных стенах; накаты перекрытий при неисправных крышах; деревянные перегородки из сырого леса, оштукатуренные с двух сторон; полы, накаты, балки под санузлами и кухнями при повышенной влажности; деревянные конструкции, увлажненные и плохо проветриваемые.

Участки древесины, пораженные грибами, вырезаются и сжигаются, после чего конструкция усиливается антисептиро- ванной древесиной или специальными металлическими протезами. Во избежание повторного поражения древесины грибами надо улучшить уход за ней: не допускать увлажнения, обеспечивать проветривание и т. п.

Вредителями древесины являются также жуки-точильщики, их личинки и термиты. Участки древесины, пораженные жуками и их личинками, тщательно осматриваются, после чего решается вопрос о несущей способности данного элемента, его замене или протезировании. Пораженные участки вырезаются и сжигаются. В жарких районах большой вред деревянным конструкциям, особенно элементам, расположенным вблизи земли, наносят термиты.

Бетон, благодаря своим техническим характеристикам и возможностям дизайна, завоевал лидирующее место на рынке строительных материалов. Однако и он, подвергаясь агрессивным внешним воздействиям, постепенно разрушается с ухудшением потребительских качеств. Этот процесс называется коррозией бетона. Согласно современным представлениям, коррозия представляет собой целый ряд химических, физико-химических реакций и биологических процессов, спровоцированных воздействием внешней среды и приводящих к разрушению материала.

Виды коррозии бетона

Любому строителю важно высокого качества. Навигатор: производство, продажа и доставка бетона в Санкт-Петербурге.

Различают три основных вида коррозии этого строительного материала:

  • К коррозии первого типа относятся все процессы, возникающие в бетоне под воздействием мягких вод. При этом составляющие цементного камня растворяются в воде и уносятся ею. Этот процесс может протекать с различной скоростью. В плотных бетонах массивных гидросооружений коррозионный процесс протекает медленно и может растянуться на несколько десятилетий. В тонкостенных бетонных конструкциях компоненты цементного камня разлагаются быстро, и через несколько лет эксплуатации может возникнуть необходимость в ремонтных работах. Если через бетон начинается процесс фильтрации воды, то разложение составляющих бетона ускоряется, из материала выносится большое количество гидроксида кальция и бетон становится высокопористым, что значит – непрочным.

Вымывание гидроксида кальция замедляется, если бетонный элемент находится на воздухе. Под воздействием углекислого газа воздуха гидроксид кальция преобразуется в карбонат кальция. Поэтому бетонные блоки, предназначенные для сооружения гидротехнических объектов, до опускания на место установки в течение нескольких месяцев выдерживают на воздухе. Эта мера дает время для карбонизации гидроксида кальция на поверхности бетона.

  • Коррозия второго типа - химическая коррозия - включает те процессы, которые протекают в бетоне при взаимодействии химических веществ, содержащихся в воде или окружающей среде, с составляющими цементного камня. В результате этих реакций в теле бетона образуются легкорастворимые продукты и аморфные массы, не имеющие вяжущей способности. Из-за этого бетон может постепенно превратиться в ноздреватую массу с предельно низкой прочностью. Например, к этому типу относится сульфатная коррозия, которая возникает вследствие взаимодействия бетона с водой, содержащей большое количество сульфатов.

Из процессов коррозии второго типа наибольшее значение имеют магнезиальная и углекислотная коррозия.

  • Коррозия третьего вида включает процессы, при которых в капиллярах и порах бетона накапливаются малорастворимые соли. Кристаллизация этих солей является причиной возникновения напряжений в капиллярах и порах, что приводит к разрушению структуры бетона. Наибольшее практическое значение в процессах этой категории имеет сульфатная коррозия.

Кроме перечисленных типов коррозионного разрушения, вызванного воздействием на бетон жидкости, различают биологическую коррозию. Ей подвергаются, в основном, здания пищевой промышленности. Причиной её возникновения являются грибки, бактерии, водоросли. Разрушение бетона вызывают продукты их метаболизма. Особенно этот процесс активизируется в условиях высокой влажности.

Защита бетона от коррозии путем повышения стойкости самого материала

Один из способов профилактики коррозии - . Читайте в нашей статье, как правильно повысить плотность бетона.

Приготовление шлакобетона - все о том, как правильно выбрать шлак и вручную приготовить шлакобетон.

Нужен ? Обращайтесь к менеджерам компании «ТД Навигатор»!

Многие мероприятия по борьбе с коррозией являются сложно выполнимыми или не слишком эффективными. На практике стараются использовать наиболее простые и недорогие способы и, прежде всего, повышают устойчивость самого бетона путем применения коррозионностойкого цемента или придания материалу высокой плотности и водонепроницаемости.

  • Использование коррозионностойких цементов. В некоторых случаях возникновение сульфатной коррозии бетона можно избежать, применив вместо портландцемента или шлакопортландцемента цементы, обладающие сульфатостойкостью. Эти специальные цементы содержат активные компоненты, которые позволяют повысить стойкость бетона не только к сульфатным, но и к пресным водам.
  • Повышение плотности бетона. Этот вид борьбы с коррозией является эффективным способом защиты материала от коррозионных процессов всех видов. Увеличение плотности бетона снижает его водонепроницаемость. Это затрудняет проникновение агрессивных сред в поры материала. Для изготовления бетона высокой плотности используют цементы с малой водопотребностью, снижают водоцементное соотношение, с особой тщательностью уплотняют смесь при изготовлении бетонного элемента.

Если эти мероприятия не дали результата, то прибегают к оптимальному в конкретном случае способу гидроизоляции.

Виды гидроизоляции

Одним из наиболее распространенных способов гидроизоляции для изделий из бетона и железобетона – свай, труб, колонн, плит – является пропиточная гидроизоляция.

Для эффективной защиты материала от разрушающего действия коррозии достаточно его пропитки на глубину 10-15 мм. Поверхностный водонепроницаемый слой создает защиту от проникновения воды для всего остального объема конструкционного элемента.

Способы пропитки различают по температуре и давлению. По температуре пропитки бывают горячие и холодные.

  • Для горячей пропитки используются нефтяные битумы, парафины, петролатум, синтетические составы. Операцию пропитки осуществляют, как правило, в ваннах при температурах 80-180°С. При нагревании пропиточный состав переходит в жидкое состояние, его вязкость снижается, он легко проникает в поры бетона, плотно их закупоривая при застывании.
  • В качестве холодных пропиток используют составы, основой которых являются минеральные вяжущие вещества – цемент, силикат натрия, или органические низко- и высокомолекулярные вещества – стирол, метилметакрилат, полиуретан.

Пропиточная гидроизоляция может осуществляться при различном давлении:

  • Наиболее простая операция – пропитка в условиях атмосферного давления. При этом процессе проникновение состава в поры происходит только благодаря капиллярному эффекту.
  • Пропитка в автоклавах производится при давлении 0,6-1,2 МПа, но, несмотря на высокое давление, скорость процесса увеличивается не более чем в два раза. Это связано с наличием воздуха в порах, занимающего часть объема и оказывающего противодействие пропиточному составу.
  • Вакуумирование повышает эффективность обработки бетона в 3-4 раза. Пропиточные составы легко проникают в поры, из которых откачан воздух, не встречая противодействия.

Поверхностную пропитку проводят непосредственно на объекте составами с высокой проникающей способностью. Обработка, как правило, проводится дважды.

Другие виды гидроизоляции: инъектирование, гидрофобизация, мастичная и рулонная оклеечная гидроизоляция.

Коррозионное разрушение арматуры в бетоне

Срок службы строительных конструкций сокращает не только коррозия бетона, но и коррозия металлической арматуры. Процесс разрушения металла осуществляется в течение некоторого времени, но определить точный срок службы металлических элементов теоретически невозможно. Особенно опасной является коррозия арматуры в тяжело нагруженных конструкциях.

Пропиточная гидроизоляция с применением - очень эффективный способ защиты от коррозии, если пропитка выбрана правильно.

Предпочитаете гидрофобные добавки в бетон? Читайте о том, как правильно подбирать и использовать их.

Если Вас интересует аренда абс (автобетононасоса), с нашими ценами и условиями.

Для предотвращения коррозии необходимо позаботиться, чтобы в составе бетона не находились вещества, агрессивно относящиеся к металлу. Но на практике эта задача является неосуществимой, поскольку невозможно проверить химический состав всех заполнителей бетона.

Коррозия арматуры инициируется элементами, содержащимися в воздухе и влаге, проникающими через поры бетона. Из-за неравномерности этого процесса на разных участках арматуры возникают различные потенциалы, что становится причиной электрохимической коррозии. Скорость этого коррозионного процесса возрастает с повышением пористости и влагопроницаемости материала, а также из-за увеличения концентрации электролита, которую повышают растворенные в воде вещества.

Большой урон металлической арматуре наносит электрокоррозия, возникающая благодаря токам утечки и блуждающим токам, которые появляются в местах расположения электроопор.

Железобетонные опоры контактных сетей являются наиболее уязвимыми составляющими на электрифицированных участках железных дорог.

Способы борьбы с коррозией арматуры

В современном строительстве применяются водоотталкивающие смазки и защитные покрытия для арматуры. Одним из способов защиты металлических элементов является обеспечение бетонной подушки необходимой величины с помощью фиксаторов.

Одной из основных трудностей борьбы с коррозией арматуры является невозможность повторной обработки металла, которую можно проводить для открытых металлоконструкций.

Наиболее перспективным направлением считается использование в составе бетонов полимерных смесей. Полимеры, вводимые в бетон в сочетании с цементом, создают дополнительную защиту арматуре. В некоторых случаях цемент полностью заменяют полимерами, получая полимербетон.

Для тонкостенных конструкций возможно использование принципиально новых материалов:

  • сталефибробетон представляет собой бетонную смесь, в которую добавляют обрезки стальной проволоки, занимающие до 6% от общего объема материала;
  • в стеклофибробетон добавляют, помимо традиционных компонентов, щелочестойкое стекловолокно.

Пока не найдены универсальные и эффективные способы борьбы с коррозией металла в железобетоне, строители вынуждены закладывать арматуру в большем количестве, чем положено в соответствии с техническими расчетами.

GD Star Rating
a WordPress rating system

Коррозия бетона и арматуры: разновидности процесса и способы защиты , 4.0 из 5 - всего голосов: 42

Изначально термин «коррозия» применялся только в отношении металлов. Позже его стали употреблять касательно других материалов и изделий из них. Главный синоним коррозии – разрушение. А этому процессу подвержены практически все строительные конструкции под влиянием различных внешних факторов.

В частности коррозия бетона – это распад его структуры, потеря плотности, прочности и, как следствие, утрата эксплуатационных качеств. Разрушение бетонных элементов начинается с рассыпания или расслоения цементного камня, поскольку заполнители более стойки к агрессивным воздействиям.

Виды коррозии бетона

Вредное, разрушительное влияние на бетон могут оказывать атмосферные осадки, содержащие кислоты и даже воздух поблизости от многих промышленных предприятий (газовая коррозия). А также вода из рек, морей, грунта, дренажных систем и стоков. Когда конструкция выполнена из армированного бетона, то к внешним факторам добавляется еще и опасность возникновения коррозионных процессов в арматуре.

В зависимости от характера содержащихся во внешней среде примесей коррозия бетона и железобетона делится на три типа:

  • 1 вид коррозии – разложение цементного камня в результате выщелачивания гидроксида кальция. Этот элемент может присутствовать в бетонной смеси с момента ее формовки, либо образоваться в процессе воздействия на готовую конструкцию воды с вредными примесями. Са(ОН) 2 – это компонент, который легче всего растворяется и быстрее всего вымывается из тела бетона, тем самым разрушая его.
  • 2 вид – подразумевает распад цементного камня от взаимодействия с кислотами. Этот тип называют химической коррозией В этом случае в конструкции происходит вымывание легкорастворимых известковых продуктов, либо проистекает процесс, обратный этому.Под воздействием агрессивных вод в теле бетона образуются осадки, не обладающие вяжущими свойствами. В результате изделие теряет прочность и превращается в слабую рыхлую массу. В эту категорию можно включить щелочную коррозию, которую вызывает избыток противоморозных добавок при формировании бетонной смеси.
  • 3 вид коррозии – это процесс, при котором под воздействием кислоты образуется соединение кальция, не растворимое в воде. СаСО 2 или CaSO 4 постепенно заполняет свободные поры в массе бетона, увеличивая его объем, что в результате приводит к разрушению конструкции. Из всех видов 3 категории на практике чаще всего встречается сульфатная коррозия.

Понятно, что такое разделение является условным, так как не всегда можно с большой точностью определить, что именно повлияло на разъедание конкретного сооружения.

Коррозионные процессы происходят обычно под влиянием совокупности различных факторов и одновременно может совершаться несколько категорий разрушений.

В том числе значительное влияние на целостность конструкции оказывает отсутствие или наличие коррозии арматуры в железобетоне.

Что приводит к ржавлению арматурного каркаса

Существует несколько причин появления ржавчины на металле внутри бетонной массы. И далеко не всегда это внешние воздействия.

  • Внутреннюю коррозию может вызвать наличие большого количества агрессивных компонентов в воде, которой затворяют бетонную смесь. Кроме того, для создания армированного бетона нельзя использовать состав, содержащий более 2% (от массы цемента) хлористого кальция. Поскольку этот элемент значительно ускоряет коррозию арматуры в бетоне при эксплуатации в любой среде.
  • Немаловажное значение имеет плотность укладки бетонной смеси. Дело в том, наличие большого количества пор, пустот, раковин дает возможность влаге и воздуху проникать внутрь изделия, к арматурному каркасу. В результате на различных участка металлического контура возникают разные электрические потенциалы, что приводит к электрохимической коррозии.
  • Понятие физическая коррозия связано с разрушением бетона в результате его попеременного замораживания и оттаивания. Избежать этой неприятности можно, создав благоприятные условия во время набора бетоном прочности до заданной величины.

Чтобы правильно оценить ситуацию и принять меры для ее исправления, необходимо понять уровень угрозы. Для определения степени коррозии арматуры и бетона применяются физико-химические способы:

  • Изучение состава компонентов, вновь образованных в бетонной массе под воздействием агрессивных веществ. Исследования выполняются в лаборатории при помощи дифференциально-термической и рентгено-структурной диагностики на специально отобранных образцах.
  • Проведение визуального осмотра измененной структуры бетона в конструкции, используя увеличительную лупу. Этот способ позволяет выявить многие поверхностные дефекты.
  • Мощные микроскопы помогают обнаружить характер расположения и соединения элементов цементного камня с зернами заполнителей. А также состояние контакта бетона с арматурой, габариты и направление распространения трещин.

Для определения прочностных характеристик эксплуатируемых конструкций из бетона и железобетона применяются неразрушающие методы контроля в соответствии с рекомендациями и требованиями ГОСТ 18105-86.

Как защитить бетон от коррозии

Методы защиты бетонных и железобетонных конструкций от разрушений из-за ржавчины можно разделить на такие варианты:

  • Подкорректировать состав бетонной смеси таким образом, чтобы увеличить его прочностные характеристики, а также устойчивость к вредному влиянию условий эксплуатации. Достичь этого можно использованием специальных добавок или вяжущего с особыми свойствами. Например, белитового цемента, понижающего степень образования гидроксида кальция.
  • Употреблять средства по защите арматуры в бетоне от коррозии в процессе формирования стального каркаса.
  • Обработать внешние поверхности конструкций гидравлическими смесями.
  • Использовать меры по покрытию бетона антикоррозионными препаратами, обладающими свойством глубокого проникновения в тело изделия.

Существует много причин для образования коррозии железобетона, и меры защиты также бывают разными. Их делят на первичные и вторичные. К первым относятся мероприятия, по приданию бетонной смеси улучшенных характеристик. Применяются добавки, оказывающие стабилизирующее, гидроизоляционное действие, а также пластификаторы, биоциды и многое другое. К таким относятся:

  • сульфатно-дрожжевая бражка;
  • кремнийорганический препарат;
  • мылонафт.

Вторичную защиту бетона от коррозии обеспечивает внешнее покрытие бетонных конструкций лакокрасочными, мастичными материалами, либо пропитками с уплотняющими свойствами.

Хороший результат дает гидроизоляционное оклеечное покрытие. Однако наилучшего эффекта можно добиться, используя первичную и вторичную защиту в совокупности.

Коррозия в любом своем проявлении опасна для построек из бетона и железобетона. Поэтому очень важно соблюдать нормы и правила возведения зданий, сооружений. Применять необходимые защитные меры, препятствующие ржавлению конструкций.

Широкое применение новых высококачественных материалов и повышение долговечности конструкций за счет проведения противокоррозионной защиты бетона и железобетона - одна из важных народнохозяйственных задач. Наиболее интенсивная коррозия наблюдается в зданиях и сооружениях химических производств, что объясняется действием различных газов, жидкостей и мелкодисперсных частиц непосредственно на строительные конструкции, оборудование и сооружения, а также проникновением этих агентов в грунты и действием их на фундаменты. Основной задачей, стоящей перед противокоррозионной техникой, является повышение надежности защищаемого оборудования, строительных конструкций и сооружений. Это должно осуществляться за счет широкого применения высококачественных лакокрасочных материалов, и в первую очередь эпоксидных смол, стеклопластиков, полимерных подслоечных материалов и новых герметиков.

Коррозия
- процесс разрушения материалов вследствии химических или электрохимических процессов. Эрозия – механическое разрушение поверхности. По внешнему виду коррозию различают: пятнами, язвами, точками, внутрикристаллитную, подповерхностную.

По характеру коррозионной среды различают следующие основные виды коррозии: газовую, атмосферную, жидкостную и почвенную. Газовая коррозия происходит при отсутствии конденсации влаги на поверхности. На практике такой вид коррозии встречается при эксплуатации металлов и бетона при повышенных температурах. Атмосферная коррозия относится к наиболее распространенному виду электрохимической коррозии, так как большинство металлических и железобетонных (бетонных) конструкций эксплуатируются в атмосферных условиях. Коррозия, протекающая в условиях любого влажного газа, также может быть отнесена к атмосферной коррозии. Жидкостная коррозия в зависимости от жидкой среды бывает кислотная, щелочная, солевая, морская и речная. По условиям воздействия жидкости на поверхность бетона и железобетона эти виды коррозии получают добавочные характеристики: с полным и переменным погружением, капельная, струйная. Кроме того по характеру разрушения различают коррозию равномерную и неравномерную.

Бетон и железобетон находят широкое применение в качестве конструкционного материала при строительстве зданий и сооружений химических производств. Но они не обладают достаточной химической стойкостью против действия кислых сред. Свойства бетона и его стойкость в первую очередь зависит от химического состава цемента из которого он изготовлен. Наибольшее применение в конструкциях и оборудовании находят бетоны на портландцементе. Причиной пониженной химической стойкости бетона к действию минеральных и органических кислот является наличие свободной гидроокиси кальция (до 20%), трехкальциевого алюмината и других гидратированных соединений кальция. При непосредственном воздействии кислых сред на бетон происходит нейтрализация щелочей с образованием хорошо растворимых в воде солей, а затем взаимодействие кислых растворов со свободным гидрооксидом кальция с образованием в бетоне солей, обладающих различной растворимостью в воде. Коррозия бетона и железобетона происходит тем интенсивнее, чем выше концентрация водных растворов кислот. При повышенных температурах агрессивной среды коррозия бетонов ускоряется. Несколько более высокой кислотостойкостью обладает бетон, изготовленный на глиноземистом цементе, из-за пониженного содержания оксида кальция. Кислотостойкость бетонов на цементах с повышенным содержанием оксида кальция в некоторой степени зависит от плотности бетона. При большей плотности бетона кислоты оказывают на него несколько меньшее воздействие из-за трудности проникновения агрессивной среды внутрь материала. Щелочестойкость бетонов определяется главным образом химическим составом вяжущих, на которых они изготовлены, а также щелочестойкостью мелких и крупных заполнителей.

Увеличение срока службы строительных конструкций и оборудования достигается путем правильного выбора материала с учетом его стойкости к агрессивным средам, действующим в производственных условиях. Кроме того, необходимо принимать меры профилактического характера. К таким мерам относятся герметизация производственной аппаратуры и трубопроводов, хорошая вентиляция помещения, улавливание газообразных и пылевидных продуктов, выделяющихся в процессе производства; правильная эксплуатация различных сливных устройств, исключающая возможность проникновения в почву агрессивных веществ; применение гидроизолирующих устройств и др.

Наиболее распространенным способом защиты от коррозии железобетона (бетона) , различных строительных конструкций и сооружений и оборудования является использование неметаллических химически стойких материалов: кислотоупорной керамики, жидких резиновых смесей, листовых и пленочных полимерных материалов (винипласта, поливинилхлорида, полиэтилена, резины), лакокрасочных материалов, синтетических смол и др.

Лакокрасочные покрытия вследствие экономичности, удобства и простоты нанесения, хорошей стойкости к действию промышленных агрессивных газов нашли широкое применение для защиты металлических и железобетонных (бетонных) конструкций от коррозии. Защитные свойства лакокрасочного покрытия в значительной степени обуславливаются механическими и химическими свойствами, сцеплением пленки с защищаемой поверхностью. Перхлорвиниловые и сополимерно- лакокрасочные материалы широко используются для антикоррозионной защиты бетона и железобетона.

Для антикоррозионной защиты бетона применяются химически стойкие перхлорвиниловые материалы: , эмали ХВ-785 и хлорсополимерные грунты , ХС-068, а также покрытия на основе каменноугольной смолы лак ХС-724 с эпоксидной шпатлевкой . Защитные покрытия получают последовательным нанесением на поверхность грунта, эмали и лака. Число слоев зависит от условий эксплуатации покрытия, но должно быть не менее 6. Толщина одного слоя покрытия при нанесении пульверизатором 15-20 мкм. Промежуточная сушка составляет 2-3 ч при температуре 18-20°С. Окончательная сушка длится 5 суток для открытых поверхностей и до 15 суток в закрытых помещениях. Окраска химически стойким комплексом (грунт ХС-059, эмаль ХС-759 , лак ХС-724) предназначена для защиты от коррозии наружных металлических и бетонных поверхностей оборудования, подвергающихся воздействию агрессивных сред щелочного и кислотного характера. Этот комплекс отличается повышенной адгезией за счет добавки эпоксидной смолы. Химически стойкое покрытие на основе композиции из эпоксидной шпаклевки ЭП-0010 и лака ХС-724 совмещает в себе высокие адгезионные свойства, характерные для эпоксидных материалов и хорошую химическую стойкость, свойственную перхлорвинилам. Трещиностойкие химически стойкие покрытия применяют на основе хлорсульфированного полиэтилена ХСПЭ. Для защиты от коррозии железобетонных и бетонных несущих и ограждающих строительных конструкций с шириной раскрытия трещин до 0,3 мм применяют эмаль на основе хлорсульфированного полиэтилена и лак ХП-734 . Защитные покрытия наносят на поверхность бетона после окончания в нем основных усадочных процессов. При этом конструкции не должны подвергаться воздействию жидкости (воды) под давлением противоположной покрытию стороны или это воздействие следует предотвращать специальной гидроизоляцией. Материалы на основе хлорсульфированного полиэтилена пригодны для работы при температуре –60 до +130°С (выше 100°С – для кратковременной работы в зависимости от термостойкости входящих в состав покрытия пигментов). Покрытия на основе ХСПЭ, стойкие к озону, парогазовой среде, содержащей кислые газы Cl2, HCl, SO2, SO3, NO2 и к растворам кислот, могут наноситься краскораспылителем, кистью, установкой для безвоздушного нанесения. При работе краскораспылителем и кистью лакокрасочные материалы следует разводить до рабочей вязкости ксилолом или толуолом, а при нанесении установкой безвоздушного напыления – смесью ксилола (30%) и сольвента (70%).

Звоните! Специалисты компании помогут подобрать Вам антикоррозионные лакокрасочные материалы для бетона и железобетона.

- главный враг всех минеральных строительных материалов и конструкций (бетон, железобетон, кирпич, асбоцемент, силикатные, пенобетонные и газобетонные блоки). Наиболее серьезной проблемой является влияние атмосферно-химического фактора - воздействие агрессивных веществ атмосферы (карбонаты, сульфаты, хлориды), а также частые циклы заморозки-оттаивания.

Строительные материалы на минеральной основе являются капиллярно-пористыми. В результате агрессивного атмосферного воздействия внутри пористой структуры образуются кристаллы, рост которых приводит к появлению трещин. Как результат воздействия воды, солей и углекислого газа - коррозия бетона и разрушение строительных конструкций.

Защита минеральных поверхностей - это глобальная задача при проектировании, строительстве и эксплуатации любых объектов. Она актуальна для всех типов зданий, сооружений и конструкций, используемых в современном строительстве.

Антикоррозионная защита бетона

Для антикоррозионной защиты бетона и повышения долговечности бетона следует выполнять конструктивные требования и применять первичную защиту (путем введения различных модифицирующих добавок), а также вторичную защиту с нанесением на поверхности конструкций различных защитных покрытий.

К методам вторичной защиты бетона от коррозии следует отнести:

  • уплотняющие пропитки - при периодическом увлажнении водой или атмосферными осадками, при действии жидких сред, а также в качестве обработки поверхности до нанесения лакокрасочных покрытий;
  • лакокрасочные покрытия - при действии газообразных и твердых сред;
  • мастичные покрытия - при действии жидких сред, при непосредственном контакте покрытия с твердой агрессивной средой;
  • биоцидные материалы - при воздействии бактерий, грибов, микроорганизмов;
  • оклеечные покрытия - при действии жидких сред, в грунтах, в качестве непроницаемого подслоя в облицовочных покрытиях.

Целью применения защитных покрытий является антикоррозионная защита бетона, предотвращение распространения коррозии, предотвращение проникновения влаги в бетон и придание поверхности эстетического вида.

Защита бетона - краска Фасад-Люкс

Водная фасадная краска
Фасад-Люкс

от 34 руб./кв.м.

Фасадная краскаФасад-Люкс представляет собой водную дисперсию на основе акриловых смол со специальными полимерными добавками.

Акриловая краска предназначена для защитной окраски бетонных, кирпичных, асбоцементных, оштукатуренных и любых других минеральных оснований. Краска применяется для окраски фасадов, цоколей, фундаментов, стен в гаражах, подвалах, на лестницах, балконах.

Защитная краска Фасад-Люкс образует атмосферостойкое, прочное и долговечное покрытие. Акриловая краска предотвращает разрушение бетона, создает полимерную пленку, которая обеспечивает надежную защиту минеральной поверхности.

Защита камня - антикоррозионный лак Тексол

Антикоррозионный лак для камня Тексол - это прозрачный, готовый к применению универсальный полимерный лак современного класса. Антикоррозионный лак представляет собой однокомпонентный быстросохнущий материал на основе винилхлоридных смол с полимерными добавками в органических растворителях.

В результате применения Тексола на защищаемой поверхности создается полимерная пленка, надежно защищающая бетонную поверхность от негативного влияния воды, углекислого газа, атмосферных факторов и воздействий переменных температур.

Антикоррозионный лак Тексол предназначен для защиты от коррозии бетонных, железобетонных, кирпичных, асбоцементных и других минеральных поверхностей.Лак Тексол образует на поверхности прочное, стойкое к атмосферным и механическим нагрузкам покрытие.

Где это применяется?

Предлагаемые лакокрасочные покрытия рекомендуется к применению везде, где существует необходимость защиты минеральных материалов (бетона, раствора, кирпича, камня) от коррозии. Строительные конструкции из минеральных материалов встречаются всюду. Это:

  • мосты, путепроводы, тоннели
  • портовые и речные сооружения
  • гаражные комплексы, склады, терминалы
  • полы и стены производственных помещений
  • сельскохозяйственные объекты и сооружения, оранжереи, теплицы
  • очистные сооружения, коллекторы, сборники
  • стены и фасады общественных и жилых зданий
  • фасадные плиты и декоративные изделия
  • заборы, ограждающие конструкции, скульптуры и т.д.

Лакокрасочные покрытия, применяемые для защиты бетона, призваны обеспечить долговременную и качественную защиту строительных конструкций от коррозии и пагубного атмосферного воздействия.

Защита от коррозии бетона

Выбор системы защиты бетона от коррозии определяется условиями эксплуатации строительных конструкций и видом защищаемого материала.

Компания КрасКо предлагает Вам все необходимые материалы для защиты бетона от коррозии.

Подробную информацию о лакокрасочных покрытиях для антикоррозионной защиты бетона и других минеральных поверхностей Вы всегда сможете узнать на страницах нашего сайта krasko . ru .

Позвонив или написав нам, Вы всегда сможете получить консультации наших специалистов по вопросам подбора материалов и выбора системы защиты бетона от коррозии.



gastroguru © 2017