Симметрия в пространстве. Предположим, Раймонди сознательно высчитывал эту точку

Шумский Вячеслав

Исследовательская работа по математике на тему

«Симметрия в природе, технике, архитектуре и искусстве»

Скачать:

Предварительный просмотр:

МКОУ Венгеровская СОШ №2

Исследовательская работа по математике на тему

«Симметрия в природе, технике, архитектуре и искусстве»

Ученика 6а класса

Шумского Вячеслава

2012/2013 уч. Год

1. Введение

2. Основная часть

  1. Симметрия в природе
  2. Симметрия в архитектуре
  3. Симметрия в технике
  4. Симметрия в искусстве

3.Заключение

4.Литература

ВВЕДЕНИЕ

«...быть прекрасным значит быть симметричным и соразмерным».

С давних времен математика считается одной из главных наук. Математика одна из древнейших и необходимых для прогресса разных дисциплин наука.

Числа, формулы, геометрические фигуры в математике, внешне холодные и сухие, но полные внутренней красоты.

–"Можно ли с помощью симметрии создать порядок, красоту и совершенство?",

"Во всём ли в жизни должна быть симметрия?"– эти вопросы я поставила перед собой уже давно, и попробую ответить на них в этой работе.

Предметом данного исследования является симметрия как одна из математических основ з а конов красоты, взаимосвязи науки математики с окр у жающими нас живы ми и неживыми объектами.

Актуальность проблемы заключена в том, что бы показать, что красота является внешним признаком симметрии и, прежде всего, имеет математич е скую основу.

Цель работы - на примерах найти и показать симметрию как основу крас о ты в природе, технике, архитектуре и искусстве .

Задачи работы:

  1. собрать информацию по рассматриваемой теме;
  2. выделить симметрию как математическую основу законов красоты в и с кусстве (архите к тура, живопись, скульптура, природа);
  3. найти математические мотивы в филологии;
  4. изучить и выделить основные направления применения симметрии, как о с новы красоты в творчестве человека.

Результаты исследования могут заинтересовать учащихся и педагогов при изучении математики, истории, биологии, изобразительного искусс т ва, литер а туры, технологии и показать взаимосвязь всех этих дисциплин с математикой.

Немного о симметрии

Симме́три́я (др.-греч. συμμετρία - «соразмерность»), в широком смысле - неизменность при каких-либо преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы (сохраняя одну точку на месте). Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.

С симметрией мы встречаемся везде – в природе, технике, искусстве, науке. Отметим, например, симметрию, свойственную бабочке и кленовому листу, симметрию автомобиля и самолета, симметрию в ритмическом построении стихотворения и музыкальной фразы, симметрию орнаментов и бордюров, симметрию атомной структуры молекул и кристаллов. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Симметрия в природе

В отличие от искусства или техники, красота в природе не создаётся, а лишь фи к сируется, выражается. Среди бесконечного разнообразия форм живой и неживой природы в изобилии встречаются такие совершенные образы, чей вид неизменно привлекает наше внимание. К числу таких образов относятся некоторые кр и сталлы, многие растения.

Примеры трансляции подобия в природных формах. Лист подчиняется принципу зеркальной симметрии с одновременным уменьшением элементов (направленностью симметрии), цветок отличается соединением радиальной и спиральной (в трех измерениях) симметрии. Подобным же образом строятся динамично-симметричные формы раковин, листьев папоротника .

Каждая снежинка- это маленький кристалл замерзшей воды. Форма снеж и нок может быть очень разнообразной, но все они обладают симметрией - поворо т ной симметрией 6-го порядка и, кроме того, зеркальной симметрией .

Радиальная симметрия снежинок

В пространстве существуют тела, обладающие винтовой си м метрией, т.е. совмещаемые со своим первоначальным положением после поворота на какой-либо угол вокруг оси, дополненного сдвигом вдоль той же оси. Если да н ный угол поделить на 360 градусов– рациональное число, то поворотная ось ок а зывается также осью переноса.

Фигура, обладающая винтовой симметрией, которая осуществляется переносом вдоль вертикальной оси, дополненным вращением вокруг неё на 90°.

Симметрия в архитектуре.

"...быть прекрасным значит быть

симметричным и соразмерным"

Платон

(древнегреческий философ, 428 – 348 г. до н.э.)

Мы восхищаемся красотой окружающего мира и не задумываемся, что лежит в основе этой красоты.

Среди бесконечного разнообразия форм живой и неживой природы встречаются такие совершенные творения, чей вид пр и влекает наше вним а ние. Если внимательно присмотреться, то можно увидеть что основу кр а соты многих форм, созданных природой и чел о веком, составляет симметрия, то ч нее, все ее виды - от самых простых до самых сложных. О закономерности красоты задумывались мн о гие великие люди. Например, Л. Н. Толстой гов о рил, стоя перед черной доской и рисуя на ней м е лом разные фигуры: «Я вдруг был поражен мыслью: почему симметрия п о нятна гл а зу? Что такое симме т рия? Это врожденное чувство, отвечал я сам себе. На чем же оно основано?"

Греческое слово симметрия обозначает «соразмерность». Под симметрией понимают всякую правильность во внутреннем строении тела или фигуры. Учение о различных видах симметрии представляет большую и важную ветвь геометрии, связанную со многими отраслями естествознания, техники и искусства.

Симметричность очень приятна глазу. Я часто любовалась и любуюсь листьями, цветами, птицами, живо т ными или творениями человека: здани я ми, техникой, - всем тем, что нас с детства окружает, тем, что стремится к красоте и гармонии.

Сколько живёт человек, столько он и строит. Трудно найти человека, кот о рый не имел бы какого- либо представления о симметрии, как о признаке кр а соты. В обычной «нематематической» жизни мы ча с то говорим о красоте, подразумевая при этом симме т рию. Только поэтому мы чаще используем слова «симметри ч ный», «симметрично расположенный». С симметрией мы встречаемся везде - в природе, техн и ке, искусстве... Велика роль симметрии и пропорций в архите к туре. Человек всегда испол ь зовал симметрию и пр о порциональность в архитектуре. Древним храмам, башням средневековых замков, современным зданиям она придаёт гармоничность, законченность. Только неотступно следуя законам геометрии, архитекторы древности могли создавать свои шедевры.

Архитектура - удивительная область человеческой деятельности. В ней тесно переплетены и строго уравновешены наука, техника, искусство.

Прошли века, но роль симметрии не изменилась.

Появляются новые строительные материалы, но математические основы законов красоты в архитектуре остаются неизменными. Одним из художес т венных средств, которые он использует, является композиция здания. От неё в первую очередь зависит впечатление, кот о рое оставляет архитекту р ное соор у жение. Элементы симметрии можно увидеть в а р хитектуре фасадов, в оформлении внутренних помещений, колоннах, потолках и т.д. В большинс т ве сл у чаев они о б ладают осевой симметрией. В скульптуре основу композиции и изображения фигур составляет тоже теория пропорций. Использование симметрии в конструкции зданий, сим ме т ричных элементов в о т делке, а также симметрично расположенные строения создают красоту и га р монию.

Симметрия в технике

Большинство самых необходимых для нас предметов - от книги, ложки, чайника и молотка до газовой плиты, холодильника и пылесоса - тоже обладает симметрией.

Большинство транспортных средств, от детской коляски до сверхзвукового реактивного воздушного лайнера, предназначенных для движения по земной поверхности или параллельно ей, так же имеют осевую симметрию.

Космическая ракета, устремляющаяся вверх, в небо имеет и осевую, и центральную симметрию.

Различные фигуры, чаще симметричные, используются для составления орнаментов в народном творчестве.

Симметрия в искусстве.

В искусстве существует математическая теория живописи. Это теория перспективы. Так как перспектива - это учение о том, как передать на плоском листе б у маги ощущение глубины пространства, то есть передать окр у жающим мир таким, как мы его видим. Оно основано на соблюдении нескольких законов. Законы перспективы заключаются в том, что чем дальше от нас находится предмет, тем он нам кажется меньше, с о всем нечетким, на нем меньше деталей, основание его выше.

Если мы будем соблюдать все пр а ви ла, то картины будут получаться гармоничны ми , они будут иметь ощущ е ние устойчивости, равновесия. Если мы наруши м некоторые правила, то изображение сразу же станет оригинал ьным, своеобразным и интересным, таким, например, как на данном рисунке:

Таким образом, красота живописи обусловлена, в первую очередь, закон а ми математики.

Картина И. Левитана «Осень» навевает покой и тихую грусть, а картина Айвазовского пробуждает чувства тревоги, беспокойства, грусти.

ЗАКЛЮЧЕНИЕ

«Принцип симметрии охватывает все новые области. Из области криста л лографии, физики твердого тела он вошел в область химии, в область молекуля р ных процессов и в физику атома. Нет сомнения, что его проявления мы найдем в еще более далеком от окружающих нас комплексов мире электрона, и ему подч и нены будут явления квантов», – это слова академика В. И. Вернадского, занимавшегося изучением принципов симметрии в неживой природе.

Симметрия, проявляясь в самых различных объектах материального мира, нес о мненно, отражает наиболее общие, наиболее фундаментальные его свойства.
Поэтому исследование симметрии разнообразных природных объектов и сопоста
в ление его результатов является удобным и надежным инструментом познания о с новных закономерностей существования материи.

Можно увидеть, что это кажущаяся простота уведет нас далеко в мир науки и те х ники и позволит время от времени подвергать испытанию способности нашего мозга (так как именно он запрограммирован на симметрию).

ЛИТЕРАТУРА

1. Современный словарь иностранных слов. М.: Русский язык,

1993г.Советский энциклопедический словарь М.: Советская энциклопедия, 1980г.

2. Урманцев Ю.А. Симметрия природы и природа симметрии М.: Мысль,

1974г.

3. Пидоу Дэн Геометрия и искусство М.: Мир, 1979г.

4. Шафрановский И.И. Симметрия в геологии Л.: Недра, 1975г.

5. Трофимов В. Введение в геометрическом многообразии с симметриями

М.: МГУ 1989г.

Одним из важных открытий современного естествознания является тот факт, что все многообразие окружающего нас физического мира связано с тем или иным нарушением определенных видов симметрий. Чтобы это утверждение стало более понятным, рассмотрим подробнее понятие симметрии.

«Симметричное обозначает нечто, обладающее хорошим соотношением пропорций, а симметрия – тот вид согласованности отдельных частей, который объединяет их в целое. Красота тесно связана с симметрией», - писал Г. Вейль в своей книге «Этюды о симметрии». Он ссылается при этом не только на пространственные соотношения, т.е. геометрическую симметрию. Разновидностью симметрии он считает гармонию в музыке, указывающую на акустические приложения симметрии.

Зеркальная симметрия в геометрии относится к операциям отражения или вращения. Она достаточно широко встречается в природе. Наибольшей симметрией в природе обладают кристаллы (например, симметрия снежинок, природных кристаллов), однако не у всех из них наблюдается зеркальная симметрия. Известны так называемые оптически активные кристаллы , которые поворачивают плоскость поляризации падающего на них света. .

В общем случае симметрия выражает степень упорядоченности какой-либо системы или объекта. Например, круг более упорядочен и, следовательно, симметричен, чем квадрат. В свою очередь, квадрат более симметричен, чем прямоугольник. Другими словами, симметрия – это неизменность (инвариантность) каких-либо свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Например, окружность симметрична относительно любой прямой (оси симметрии), лежащей в ее плоскости и проходящей через центр, она симметрична и относительно центра.Операциями симметрии в данном случае будут зеркальное отражение относительно оси и вращение относительно центра окружности.

В широком смысле симметрия – это понятие, отображающее существующий в объективной действительности порядок, определенное равновесное состояние, относительную устойчивость, пропорциональность и соразмерность между частями целого .

Противоположным понятием является понятие асимметрии , которое отражает существующее в объективном миренарушение порядка, равновесия, относительной устойчивости, пропорциональности и соразмерности между отдельными частями целого, связанное с изменением, развитием и организационной перестройкой . Уже отсюда следует, что асимметрия может рассматриваться как источник развития, эволюции, образования нового.

Симметрия может быть не только геометрической. Различают геометрическую и динамическую формы симметрии (и, соответственно, асимметрии).

К геометрической форме симметрии (внешние симметрии) относятся свойства пространства – времени, такие как однородность пространства и времени, изотропность пространства, эквивалентность инерциальных систем отсчета и т.д.

К динамической форме относятся симметрии, выражающиесвойства физических взаимодействий , например, симметрии электрического заряда, симметрии спина и т.п. (внутренние симметрии). Современная физика, однако, раскрывает возможность сведения всех симметрий к геометрическим симметриям.

Калибровочные симметрии. Важным понятием в современной физике является понятие калибровочной симметрии.Калибровочные симметрии связаны с инвариантностью относительно масштабных преобразований . Сам термин «калибровка» происходит из жаргона железнодорожников, где он означает переход с узкой колеи на широкую. Под калибровкой, таким образом, первоначально понималось именно изменение уровня или масштаба. Так в СТО физические законы не изменяются относительно переноса (сдвига) системы координат. Траектории движения остаются прямолинейными, пространственный сдвиг остается одинаковым у всех точек пространства. Таким образом, здесь работают глобальные калибровочные преобразования.

Формы симметрии являются одновременно и формами асимметрии. Так геометрические асимметрии выражают неоднородность пространства – времени, анизотропность пространства и т.д. Динамические асимметрии проявляются в различиях между протонами и нейтронами в электромагнитных взаимодействиях, различие между частицами и античастицами (по электрическому, барионному зарядам) и т.д. .

К началу документа

  • Симметрия в природе.

  • "Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство"

  • Герман Веель

Симметрия в природе.

    Симметрией обладают не только геометрические фигуры или вещи, сделанные рукой человека, но и многие творения природы (бабочки, стрекозы, листья, морские звезды, снежинки и т. д.). Особенно разнообразны свойства симметрии кристаллов... Одни из них более симметричны, другие — менее. Долгое время ученые-кристаллографы не могли описать всех видов симметрии кристаллов. Решил эту задачу в 1890 г. русский ученый Е. С Федоров. Он доказал, что есть ровно 230 групп, переводящих в себя кристаллические решетки. Это открытие значительно облегчило кристаллографам изучение видов кристаллов, которые могут существовать в природе. Следует, однако, заметить, что многообразие кристаллов в природе настолько велико, что даже использование группового подхода не дало еще способа описать все возможные формы кристаллов.


Симметрия в природе.

    Очень широко используется теория групп симметрии в квантовой физике. Уравнения, которыми описывается поведение электронов в атоме (так называемое волновое уравнение Шредингера), уже при небольшом числе электронов настолько сложны, что непосредственное решение их практически невозможно. Однако, используя свойства симметрии атома (неизменность электромагнитного поля ядра при поворотах и симметриях, возможность некоторых электронов между собой, т.е. симметричное расположение этих электронов в атоме и т.д.), удается исследовать их решения, не решая уравнений. Вообще, использование теории групп является мощным математическим методом исследования и учета симметрии явлений природы.


Симметрия в живой природе.


Зеркальная симметрия в природе.


Золотое сечение.

    ЗОЛОТОЕ СЕЧЕНИЕ — теоретически термин сформирован в эпоху Возрождения и обозначает строго определенное математическое соотношение пропорций, при котором одна из двух составных частей во столько же раз больше другой, во сколько сама меньше целого. Художники и теоретики прошлого нередко считали золотое сечение идеальным (абсолютным) выражением пропорциональности, на деле же эстетическое значение этого «непреложного закона» ограниченно в силу известной неуравновешенности горизонтального и вертикального направлений. В практике изобразительного искусства 3. с. редко применяется в его абсолютной, неизменной форме; большое значение имеют здесь характер и мера отклонений от абстрактной математической пропорциональности.


Золотое сечение в природе

  • Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах - рост вверх или расстилание по поверхности земли и закручивание по спирали.

  • Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

  • Рис.1. Спираль Архимеда.



Принципы формообразования в природе.

    В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции - длина ее хвоста так относится к длине остального тела, как 62 к 38. И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы - симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.


Золотое сечение в природе


Симметрия в искусстве.

  • В искусстве симметрия 1 играет огромную роль, многие шедевры архитектуры обладают симметрией. При этом обычно имеется в виду зеркальная симметрия. Термин "симметрия" в разные исторические эпохи использовался для обозначения разных понятий.

  • Симметрия - соразмерность, правильность в расположении частей целого.

  • Для греков симметрия означала соразмерность. Считалось, что две величины являются соразмерными, если существует третья величина, на которую эти две величины делятся без остатка. Здание (или статуя) считалось симметричным, если оно имело какую-то легко различимую часть, такую, что размеры всех остальных частей получались умножением этой части на целые числа, и таким образом исходная часть служила видимым и понятным модулем.


Золотое сечение в искусстве.

    Искусствоведы дружно утверждают, что на живописном полотне существуют четыре точки повышенного внимания. Располагаются они по углам четырехугольника, и зависят от пропорций подрамника. Считается, что какими бы ни были масштабы и размеры холста, все четыре точки обусловлены золотым сечением. Все четыре точки (их называют зрительными центрами) расположены на расстоянии 3/8 и 5/8 от краев Полагают, что это матрица композиции любого произведения изобразительного искусства.

    Вот, к примеру, поступившая в 1785 г. в Государственный Эрмитаж из Академии наук камея «Суд Париса». (Она украшает кубок Петра I.) Итальянские камнерезы не раз повторяли этот сюжет на камеях, инталиях и резных раковинах. В каталоге можно прочитать, что изобразительным прототипом послужила гравюра Маркантонио Раймонди по утраченному произведению Рафаэля.


Золотое сечение в искусстве.

  • И действительно, одна из четырех точек золотого сечения приходится на золотое яблоко в руке Париса. А если точнее, то на точку соединения яблока с ладонью.

  • Предположим, Раймонди сознательно высчитывал эту точку. Но вряд ли можно поверить, что и скандинавский мастер середины VIII века сначала сделал «золотые» вычисления, и по их результату задал пропорции бронзовому Одину.

  • Очевидно, это произошло бессознательно, то есть интуитивно. А если так, значит, золотое сечение не нуждается в том, чтобы мастер (художник или ремесленник) сознательно поклонялся «золоту». Достаточно, чтобы он поклонялся красоте.

  • Рис.2.

  • Поющий Один из Старой Ладоги.

  • Бронза. Середина VIII века.

  • Высота 5,4 см. ГЭ, № 2551/2.



Золотое сечение в искусстве.

  • «Явление Христа народу» Александра Иванова. Явственный эффект приближение Мессии к людям возникает из-за того, что он уже прошел точку золотого сечения (перекрестье оранжевых линий) и сейчас входит в ту точку, которую мы будем называть точкой серебряного сечения (это отрезок, деленный на число π, или отрезок минус отрезок, деленный на число π).


«Явление Христа народу».


    Переходя к примерам “золотого сечения” в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность - одна из загадок истории. Сам Леонардо да Винчи говорил: “Пусть никто, не будучи математиком, не дерзнет читать мои труды”. Он снискал славу непревзойденного художника, великого ученого, гения, предвосхитившего многие изобретения, которые не были осуществлены вплоть до XX в. Нет сомнений, что Леонардо да Винчи был великим художником, это признавали уже его современники, но его личность и деятельность останутся покрытыми тайной, так как он оставил потомкам не связное изложение своих идей, а лишь многочисленные рукописные наброски, заметки, в которых говорится “обо всем на свете”. Он писал справа налево неразборчивым почерком и левой рукой. Это самый известный из существующих образец зеркального письма. Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Существует очень много версий об истории этого портрета. Вот одна из них. Однажды Леонардо да Винчи получил заказ от банкира Франческо де ле Джокондо написать портрет молодой женщины, жены банкира, Монны Лизы. Женщина не была красива, но в ней привлекала простота и естественность облика. Леонардо согласился писать портрет. Его модель была печальной и грустной, но Леонардо рассказал ей сказку, услышав которую, она стала живой и интересной.


Золотое сечение в работах Леонардо да Винчи.

  • А при анализе трех портретов Работы Леонардо да Винчи оказывается, что у них практически идентичная композиция. И построена она не на золотом сечении, а на √2, горизонтальная линия которого на каждой из трех работ проходит через кончик носа.


Золотое сечение в картине И. И. Шишкина"Сосновая роща"

    На этой знаменитой картине И. И. Шишкина с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны - освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины по золотому сечению и дальше. Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия, в соответствии с замыслом художника. Когда же замысел художника иной, если, скажем, он создает картину с бурно развивающимся действием, подобная геометрическая схема композиции (с преобладанием вертикалей и горизонталей) становится неприемлемой.


Золотая спираль в картине Рафаэля"Избиение младенцев"

    В отличии от золотого сечения ощущение динамики, волнения проявляется, пожалуй, сильней всего в другой простой геометрической фигуре - спирали. Многофигурная композиция, выполненная в 1509 - 1510 годах Рафаэлем, когда прославленный живописец создавал свои фрески в Ватикане, как раз отличается динамизмом и драматизмом сюжета. Рафаэль так и не довел свой замысел до завершения, однако, его эскиз был гравирован неизвестным итальянским графиком Маркантинио Раймонди, который на основе этого эскиза и создал гравюру"Избиение младенцев".

    На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка, - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Если естественным образом соединить эти куски кривой пунктиром, то с очень большой точностью получается...золотая спираль! Это можно проверить, измеряя отношение длин отрезков, высекаемых спиралью на прямых, проходящих через начало кривой.


Золотое сечение в архитектуре.

    Как указывает Г.И. Соколов, протяженность холма перед Парфеноном, длины храма Афины и участка Акрополя за Парфеноном соотносятся как отрезки золотой пропорции. При взгляде на Парфенон у места расположения монументальных ворот при входе в город (пропилеи) отношения массива скалы у храма также соответствует золотой пропорции. Таким образом, золотая пропорция была использована уже при создании композиции храмов на священном холме.

  • Многие исследователи, стремившиеся раскрыть секрет гармонии Парфенона, искали и находили в соотношениях ее частей золотое сечение. Если принять за единицу ширины торцовый фасад храма, то получим прогрессию, состоящую из восьми членов ряда: 1: j: j 2: j 3: j 4: j 5: j 6: j 7, где j =1,618 .


Золотое сечение в литературе.


Симметрия в повести «Собачье сердце»


Золотые пропорции в литературе. Поэзия и золотое сечение

    Многое в структуре поэтических произведений роднит этот вид искусства с музыкой. Четкий ритм, закономерное чередование ударных и безударных слогов, упорядоченная размерность стихотворений, их эмоциональная насыщенность делают поэзию родной сестрой музыкальных произведений. Каждый стих обладает своей музыкальной формой - своей ритмикой и мелодией. Можно ожидать, что в строении стихотворений проявятся некоторые черты музыкальных произведений, закономерности музыкальной гармонии, а следовательно, и золотая пропорция.

    Начнем с величины стихотворения, то есть количества строк в нем. Казалось бы, этот параметр стихотворения может изменяться произвольно. Однако оказалось, что это не так. Например, проведенный Н. Васютинским анализ стихотворений А.С. Пушкина с этой точки зрения показал, что размеры стихов распределены весьма неравномерно; оказалось, что Пушкин явно предпочитает размеры в 5, 8, 13, 21 и 34 строк (числа Фибоначчи).


Золотое сечение в стихотворении А.С. Пушкина.

  • Многими исследователями было замечено, что стихотворения подобны музыкальным произведениям; в них также существуют кульминационные пункты, которые делят стихотворение в пропорции золотого сечения. Рассмотрим, например, стихотворение А.С. Пушкина "Сапожник":


Золотые пропорции в литературе.

  • Одно из последних стихотворений Пушкина "Не дорого ценю я громкие права..." состоит из 21 строки и в нем выделяется две смысловые части: в 13 и 8 строк.


Федеральное агенство по образованию

РЫБИНСКАЯ ГОСУДАРСТВЕННАЯ АВИАЦИОННАЯ ТЕХНОЛОГИЧЕСКАЯ

АКАДЕМИЯ им. П.А. Соловьева

Факультет: СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЙ

Кафедра: физики

РЕФЕРАТ

по дисциплине:

«Концепции современного естествознания»

«Симметрия в естествознании»

Студент группы ЗКП-09 Большаков Д.Н.

Преподаватель: Гурьянов А.И.

Рыбинск 2009

Введение ………………………………………………………………….3

Понятие симметрии………………………………………………………5

Виды симметрии………………………………………………………….6

Симметрия кристаллов…………………………………………………...8

Симметрия пространства……………………………………………… 14

Симметрия времени…………………………………………………… 15

Заключение………………………………………………………………17

Список литературы……………………………………………………...18

Введение

Симметрия – это такая особенность природы, про которую принято говорить, что она охватывает все формы движения и организации материи. Истоки понятия симметрии восходят к древним. Наиболее важным открытием древних было осознание сходства и различия правого и левого. Здесь природными образцами им служили собственное тело, а также тела животных, птиц и рыб.

Вот что написал русский исследователь, ученый ломоносовского склада, энциклопедист В.И. Вернадский в своей работе «Химическое строение биосферы Земли и ее окружения»: «…чувство симметрии и реальное стремление его выразить в быту и в жизни существовало в человечестве с палеолита или даже с эолита, то есть самых длительных периодов в доистории человечества, который длился для палеолита около полмиллиона лет, а для эолита – миллионы лет. Это чувство и связанная с ним работа, еще резко и интенсивно меняясь, сказывались и в неолите 25 000 лет тому назад».

Можно вспомнить также великолепные памятники архитектуры глубокой древности, где пространственные закономерности проявляются особенно ярко. Это храмы древнего Вавилона и пирамиды Гизы, дворец в Ашшуре. Итак, с глубокой древности, начиная, по-видимому с неолита, человек постепенно осознал и пытался выразить в художественных образах тот факт, что в природе, кроме хаотического расположения одинаковых предметов или их частей, существуют некоторые пространственные закономерности. Они могут быть совсем простыми – последовательное повторение одного предмета, более сложными – повороты или отражения в зеркале. Для того, чтобы точно выразить эти закономерности, нужны были специальные термины. По преданию, их придумал Пифагор Регийский.

Термином «симметрия», что в буквальном смысле значит соразмерность (пропорциональность, однородность, гармония), Пифагор Регийский обозначил пространственную закономерность в расположении одинаковых частей фигуры или самих фигур. Симметрия может проявляться в перемещениях, поворотах или отражениях в зеркале.

Понятие симметрии

Симметрия – от греческого symmetria, что значит соразмерность – отражает универсальные взаимосвязи объектов мира, выражающиеся одновременно в соотношениях их тождества и различия.

Истоки представлений о симметрии своими глубокими корнями уходят в духовный мир народов Древнего Востока, Греции и Рима.

Одним из важных открытий современного естествознания является тот факт, что все многообразие окружающего нас физического мира связано с тем или иным нарушением определенных видов симметрий. Чтобы это утверждение стало более понятным, рассмотрим подробнее понятие симметрии. «Симметричное обозначает нечто, обладающее хорошим соотношением пропорций, а симметрия – тот вид согласованности отдельных частей, который объединяет их в целое. Красота тесно связана с симметрией», - писал Г. Вейль в своей книге «Этюды о симметрии». Он ссылается при этом не только на пространственные соотношения, т.е. геометрическую симметрию. Разновидностью симметрии он считает гармонию в музыке, указывающую на акустические приложения симметрии.

Зеркальная симметрия в геометрии относится к операциям отражения или вращения. Она достаточно широко встречается в природе. Наибольшей симметрией в природе обладают кристаллы (например, симметрия снежинок, природных кристаллов), однако не у всех из них наблюдается зеркальная симметрия. Известны так называемые оптически активные кристаллы, которые поворачивают плоскость поляризации падающего на них света. В общем случае симметрия выражает степень упорядоченности какой-либо системы или объекта. Например, круг более упорядочен и, следовательно, симметричен, чем квадрат. В свою очередь, квадрат более симметричен, чем прямоугольник. Другими словами, симметрия – это неизменность (инвариантность) каких-либо свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Например, окружность симметрична относительно любой прямой (оси симметрии), лежащей в ее плоскости и проходящей через центр, она симметрична и относительно центра. Операциями симметрии в данном случае будут зеркальное отражение относительно оси и вращение относительно центра окружности.

В широком смысле симметрия – это понятие, отображающее существующий в объективной действительности порядок, определенное равновесное состояние, относительную устойчивость, пропорциональность и соразмерность между частями целого. Противоположным понятием является понятие асимметрии, которое отражает существующее в объективном мире нарушение порядка, равновесия, относительной устойчивости, пропорциональности и соразмерности между отдельными частями целого, связанное с изменением, развитием и организационной перестройкой. Уже отсюда следует, что асимметрия может рассматриваться как источник развития, эволюции, образования нового. Симметрия может быть не только геометрической. Различают геометрическую и динамическую формы симметрии (и, соответственно, асимметрии). К геометрической форме симметрии (внешние симметрии) относятся свойства пространства – времени, такие как однородность пространства и времени, изотропность пространства, эквивалентность инерциальных систем отсчета и т.д.

К динамической форме относятся симметрии , выражающие свойства физических взаимодействий, например, симметрии электрического заряда, симметрии спина и т.п. (внутренние симметрии). Современная физика, однако, раскрывает возможность сведения всех симметрий к геометрическим симметриям.

Виды симметрии

В отличие от искусства или техники, красота в природе не создаётся, а лишь фиксируется, выражается. Среди бесконечного разнообразия форм живой и неживой природы в изобилии встречаются такие совершенные образы, чей вид неизменно привлекает наше внимание. К числу таких образов относятся некоторые кристаллы, многие растения.

В конформной (круговой) симметрии главным преобразованием является инверсия относительно сферы. Для простоты возьмём круг радиуса R с центром в точке O. Инверсия этого круга определяется как такое преобразование симметрии, которое любую точку P переводит в точку P", лежащую на продолжении радиуса, проходящего через точку P на расстоянии от центра:

Конформная симметрия обладает большой общностью. Все известные преобразования симметрии: зеркальные отражения, повороты, параллельные сдвиги представляют собой лишь частные случаи конформной симметрии.

Главная особенность конформного преобразования состоит в том, что оно всегда сохраняет углы фигуры и сферу и всегда переходит в сферу другого радиуса.

Известно, что кристаллы какого-либо вещества могут иметь самый разный вид, но углы между гранями всегда постоянны.

Зеркальной симметрии . Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична. Сначала представляется, что параллельно одной из его сторон могла бы проходить ось симметрии. Но стоит мысленно попробовать воспользоваться ею, как сразу убеждаешься, что это не так. Несимметрична и спираль.

В то время как симметричные фигуры полностью соответствуют своему отражению, несимметричные отличны от него: из спирали, закручивающейся справа налево, в зеркале получится спираль, закручивающаяся слева направо.

Если вы поместите буквы перед зеркалом, расположив его параллельно строке, то заметите, что те из них, у которых ось симметрии проходит горизонтально, можно прочесть и в зеркале. А вот те, у которых ось расположена вертикально или отсутствует вовсе, становятся «нечитабельными».

Существуют языки, в которых начертание знаков опирается на наличие симметрии. Так, в китайской письменности иероглиф означает именно истинную середину.

В архитектуре оси симметрии используются как средства выражения архитектурного замысла. В технике оси симметрии наиболее четко обозначаются там, где требуется оценить отклонение от нулевого положения, например на руле грузовика или на штурвале корабля.

Симметрия проявляется в многообразных структурах и явлениях неорганического мира и живой природы. В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.

Винтовая симметрия. В пространстве существуют тела, обладающие винтовой симметрией, т.е. совмещаемые со своим первоначальным положением после поворота на какой-либо угол вокруг оси, дополненного сдвигом вдоль той же оси. Если данный угол поделить на 360 градусов - рациональное число, то поворотная ось оказывается также осью переноса.

Понимать, что такое симметрия в математике, необходимо, чтобы в дальнейшем освоить базовые и продвинутые темы алгебры, геометрии. Немаловажно это и для понимания черчения, архитектуры, правил построения рисунка. Несмотря на тесную связь с самой точной наукой - математикой, симметрия важна и для артистов, художников, творцов, и для тех, кто занимается научной деятельностью, причем в любой области.

Общая информация

Не только математика, но и естественные науки во многом основаны на понятии симметрии. Более того, оно встречается в повседневной жизни, является одним из базовых для природы нашей Вселенной. Разбираясь, что такое симметрия в математике, необходимо упомянуть, что существует несколько типов этого явления. Принято говорить о таких вариантах:

  • Двустороннем, то есть такой, когда симметрия зеркальная. Это явление в ученой среде принято именовать «билатеральным».
  • Эн-ном порядке. Для этого понятия ключевое явление - это угол поворота, вычисляемый разделением 360 градусов на некоторую заданную величину. Кроме того, заранее определяется ось, вокруг которой эти повороты совершаются.
  • Падиальная, когда явление симметрии наблюдают, если повороты совершатся произвольно на некоторый случайный по величине угол. Ось также выбирается независимым образом. Для описания такого явления применяют группу SO(2).
  • Сферическая. В этом случае речь идет о трех измерениях, в которых объект вращают, выбирая произвольные углы. Выделяют конкретный случай изотропии, когда явление становится локальным, свойственным среде либо пространству.
  • Вращательная, соединившая в себе две описанные ранее группы.
  • Лоренц-инвариативная, когда имеют место произвольные вращения. Для этого типа симметрии ключевым понятием становится «пространство-время Минковского».
  • Супер, определяемая как замена бозонов фермионами.
  • Высшая, выявляемая в ходе группового анализа.
  • Трансляционная, когда имеются сдвиги пространства, для которых ученые выявляют направление, расстояние. На основе полученных данных проводят сравнительный анализ, позволяющий выявить симметрию.
  • Калибровочная, наблюдаемая в случае независимости калибровочной теории при соответствующих преобразованиях. Здесь особенное внимание обращают на теорию поля, в том числе фокусируются на идеях Янга-Миллса.
  • Кайно, принадлежащая к классу электронных конфигураций. О том, что представляет собой такая симметрия, математика (6 класс) представления не имеет, ведь это наука высшего порядка. Явление обусловлено вторичной периодичностью. Было открыто в ходе научной работы Е. Бирона. Терминология введена С. Щукаревым.

Зеркальная

Во время обучения в школе учащихся практически всегда просят сделать работу «Симметрия вокруг нас» (проект по математике). Как правило, ее рекомендуют к выполнению в шестом классе обычной школы с общей программой преподавания предметов. Чтобы справиться с проектом, необходимо сперва ознакомиться с понятием симметрии, в частности, выявить, что представляет собой зеркальный тип как один из базовых и наиболее понятных для детей.

Для выявления явления симметрии рассматривают конкретную геометрическую фигуру, а также выбирают плоскость. Когда говорят о симметричности рассматриваемого объекта? Сперва на нем выбирают некоторую точку, а затем находят для нее отражение. Между ними двумя проводят отрезок и вычисляют, под каким углом к выбранной ранее плоскости он проходит.

Разбираясь, что такое симметрия в математике, помните, что выбранная для выявления этого явления плоскость будет называться именно плоскостью симметрии и никак иначе. Проведенный отрезок должен пересекаться с ней под прямым углом. Расстояние от точки до этой плоскости и от нее до второй точки отрезка должно быть равным.

Нюансы

О чем еще интересном можно узнать, разбирая такое явление, как симметрия? Математика (6 класс) рассказывает, что две фигуры, считающиеся симметричными, совсем не обязательно идентичны друг другу. Понятие равности существует в узком и широком смысле. Так вот, симметричные объекты в узком - не одно и то же.

Какой пример из жизни можно привести? Элеметарный! Что скажете насчет наших перчаток, варежек? Мы все привыкли их носить и знаем, что терять нельзя, ведь вторую такую в пару уже не подобрать, а значит, покупать придется обе заново. А все почему? Потому что парные изделия, хотя и симметричны, но рассчитаны на левую и правую руку. Это - типичный пример зеркальной симметрии. Что касается равности, то такие объекты признают «зеркально равными».

А что с центром?

Рассматривать центральную симметрию начинают с определения свойств тела, применительно к которому необходимо оценить явление. Чтобы назвать его симметричным, сперва выбирают некоторую точку, расположенную по центру. Далее выбирают точку (условно назовем ее А) и ищут для нее парную (условно обозначим Е).

При определении симметричности точки А и Е соединяют между собой прямой линией, захватывающей центральную точку тела. Далее измеряют получившуюся прямую. Если отрезок от точки А до центра объекта равен отрезку, отделяющему центр от точки Е, можно говорить о том, что найден центр симметрии. Центральная симметрия в математике - одно из ключевых понятий, позволяющих далее развивать теории геометрии.

А если вращаем?

Разбирая, что такое симметрия в математике, нельзя упустить из внимания понятие вращательного подтипа этого явления. Для того чтобы разобраться с терминами, берут тело, имеющее центральную точку, а также определяют целое число.

В ходе эксперимента заданное тело вращают на угол, равный результату деления 360 градусов на выбранный целый показатель. Для этого необходимо знать, что такое (2 класс, математика, школьная программа). Эта ось - прямая, соединяющая две выбранные точки. О симметрии вращения можно говорить, если при выбранном угле поворота тело будет находиться в том же положении, как и до проведения манипуляций.

В том случае, когда натуральным числом было выбрано 2, и обнаружено явление симметрии, говорят, что определена осевая симметрия в математике. Такая характерна для ряда фигур. Типичный пример: треугольник.

О примерах подробнее

Практика многолетнего преподавания математики и геометрии в средней школе показывает, что проще всего с явлением симметрии разобраться, объясняя его на конкретных примерах.

Для начала рассмотрим сферу. Для такого тела одновременно свойственны явления симметричности:

  • центральной;
  • зеркальной;
  • вращательной.

В качестве главной выбирают точку, расположенную точно по центру фигуры. Чтобы подобрать плоскость, определяют большой круг и словно бы «нарезают» его на пласты. О чем говорит математика? Поворот и центральная симметрия в случае шара - понятия взаимосвязанные, при этом диаметр фигуры будет служить осью для рассматриваемого явления.

Еще один наглядный пример - круглый конус. Для этой фигуры свойственна В математике и архитектуре это явление нашло широкое теоретическое и практическое применение. Обратите внимание: в качестве оси для явления выступает ось конуса.

Наглядно демонстрирует изучаемое явление Этой фигуре свойственна зеркальная симметрия. Плоскостью выбирают «срез», параллельный основаниям фигуры, удаленный от них на равные промежутки. Создавая геометрический, начертательный, архитектурный симметрия важна не меньше, чем точным и начертательным наукам), помните о применимости на практике и пользе при планировании несущих элементов явления зеркальности.

А если более интересные фигуры?

О чем нам может рассказать математика (6 класс)? Центральная симметрия есть не только в таком простом и понятном объекте, как шар. Она свойственна и более интересным и сложным фигурам. Например, таков параллелограмм. Для такого объекта центральной точкой становится та, в которой пересекаются его диагонали.

А вот если рассматривать равнобедренную трапецию, то это будет фигура с осевой симметрией. Выявить ее можно в том случае, если правильно выбрать ось. Тело симметрично относительно линии, перпендикулярной основанию и пересекающей его ровно посередине.

Симметрия в математике и архитектуре обязательно учитывает ромб. Эта фигура примечательна тем, что одновременно объединяет в себе два типа симметричности:

  • осевой;
  • центральный.

В качестве оси необходимо выбрать диагональ объекта. В том месте, где диагонали ромба пересекаются, расположен его центр симметрии.

О красоте и симметрии

Формируя проект математике, симметрия для которого была бы ключевой темой, обычно в первую очередь вспоминают мудрые слова великого ученого Вейля: «Симметрия - это идея, которую долгие века пытается понять обычный человек, ведь именно она создает совершенную красоту через уникальный порядок».

Как известно, иные предметы кажутся большинству прекрасными, в то время как другие отталкивают, даже если в них нет очевидных изъянов. Почему так происходит? Ответ на этот вопрос показывает взаимосвязь архитектуры и математики в симметрии, ведь именно это явление и становится основой оценки предмета как эстетически привлекательного.

Одна из самых красивых женщин на нашей планете - это супермодель Кисти Тарликтон. Она уверена, что к успеху пришла в первую очередь благодаря уникальному явлению: ее губы симметричны.

Как известно, природа и тяготеет к симметрии, и не может ее достичь. Это не общее правило, но взгляните на окружающих людей: в человеческих лицах практически не найти абсолютной симметрии, хотя очевидно стремление к ней. Чем более симметрично лицо собеседника, тем он кажется красивее.

Как симметрия стала идеей о прекрасном

Удивительно, что на симметричности основано восприятие человеком красоты окружающего его пространства и объектов в нем. Долгие века люди стремятся понять, что же кажется прекрасным, а что отталкивает нелицеприятностью.

Симметричность, пропорции - вот то, что помогает визуально воспринимать некоторый объект и оценивать его положительно. Все элементы, части должны быть сбалансированы и находиться в разумных пропорциях друг с другом. Уже давно выяснили, что асимметричные предметы нравятся людям гораздо меньше. Все это связывают с понятием «гармония». Над тем, почему это так важно для человека, с древних пор ломали головы мудрецы, артисты, художники.

Стоит приглядеться к геометрическим фигурам, и явление симметрии станет очевидным и доступным для понимания. Наиболее типичные симметричные явления в окружающем нас пространстве:

  • горные породы;
  • цветы и листья растений;
  • парные наружные органы, присущие живым организмам.

Описанные явления имеют источником саму природу. А вот что можно увидеть симметричного, приглядевшись к изделиям человеческих рук? Заметно, что люди тяготеют к созданию именно такового, если стремятся сделать нечто красивое или функциональное (или и такое, и такое одновременно):

  • узоры и орнаменты, популярные с древних времен;
  • строительные элементы;
  • элементы конструкций техники;
  • рукоделие.

О терминологии

«Симметрия» - слово, пришедшее в наш язык от древних греков, впервые обративших на это явление пристальное внимание и попытавшихся изучить его. Термин обозначает наличие некоторой системы, а также гармоничное сочетание частей объекта. Переводя слово «симметрия», можно подобрать в качестве синонимов:

  • пропорциональность;
  • одинаковость;
  • соразмерность.

С древних пор симметрия является важным понятием для развития человечества в разных областях и отраслях. Народы с древности имели общие представления об этом явлении, преимущественно рассматривая его в широком смысле. Симметрия обозначала гармоничность и уравновешенность. В наше время терминологию преподают в обычной школе. Например, что такое (2 класс, математика) детям рассказывает учительница на обычном занятии.

Как идея это явление зачастую становится начальным посылом научных гипотез и теорий. Особенно популярно это было в прежние столетия, когда по всему миру властвовала идея математической гармонии, присущей самой системе мироздания. Знатоки тех эпох были убеждены, что симметричность есть проявление божественной гармонии. А вот в Древней Греции философы уверяли, что симметрична вся Вселенная, и все это базировалось по постулате: «Симметрия прекрасна».

Великие греки и симметрия

Симметричность будоражила умы известнейших ученых Древней Греции. До наших дней дошли свидетельства того, что Платон призывал отдельно восхищаться По его мнению, такие фигуры - это олицетворения стихий нашего мира. Существовала следующая классификация:

Во многом именно из-за этой теории принято именовать правильные многогранники платоновыми телами.

А вот терминологию ввели еще раньше, и тут не последнюю роль сыграл скульптор Поликлет.

Пифагор и симметрия

В период жизни Пифагора и в последующем, когда его учение переживало свой расцвет, явление симметрии удалось четко оформить. Именно тогда симметричность подверглась научному анализу, давшему важные для практического применения результаты.

Согласно полученным выводам:

  • Симметрия базируется на понятиях пропорций, однообразности и равенства. При нарушении того или иного понятия фигура становится менее симметричной, постепенно переходя в полностью асимметричную.
  • Существует 10 противоположных пар. Согласно учению, симметрия представляет собой явление, сводящее в единое противоположности и тем самым формирующее вселенную в целом. Этот постулат долгие века оказывал сильное влияние на ряд наук как точных, так и философских, а также естественных.

Пифагор и его последователи выделяли «совершенно симметричные тела», к которым причисляли удовлетворяющие условиям:

  • каждая грань - многоугольник;
  • грани встречаются в углах;
  • фигура должна иметь равные стороны и углы.

Именно Пифагор первым сказал, что таковых тел существует всего лишь пять. Это великое открытие положило начало геометрии и исключительно важно для современной архитектуры.

А вы хотите своими глазами увидеть самое прекрасное явление симметрии? Поймайте зимой снежинку. Удивительно, но факт - это крошечный кусочек падающего с неба льда имеет не только крайне сложную кристаллическую структуру, но еще и идеально симметричен. Рассмотрите ее внимательно: снежинка действительно прекрасна, а ее сложные линии завораживают.



gastroguru © 2017